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® |angevin dynamics and Path integral
representation

® Brownian Bridges
® some analytic examples

® Knotting-unknotting of DNA with
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® J[ransition Path Time distribution
® A useful form of the Bridge equation

® Allosteric transition of Adenylate Kinase



Proteins exist under 2 forms

Proteins are polymers made of 20 amino-
acids. They exist under 2 forms

Folded or Native: globular unique
conformation, biologically active

Unfolded: random coil, biologically inactive

Proteins are small objects: at equilibrium,
they fluctuate (thermally) between the 2
forms.



Hemoglobin HIV protease (199 residues)



The Protein Folding problem

® A sequence of amino-acids is given by the
biologists.

® What is the 3d shape of the corresponding
protein?

® TJo study this problem, use Molecular
Dynamics: Karplus, Levitt and Warschel,
Nobel prize in Chemistry 2013 = ANTON

® More recently, use Machine Learning:
AlphaFold2: Hassabis, Jumper, Nobel prize
in Chemistry 2024



Molecular Dynamics

® Proteins are made of amino-acids,
which are themselves made of atoms

® Each configuration of atoms {7, }has a
certain energy

® Parametrize the interaction between
constituent atoms (valence bond,
Lennard-Jones, Coulomb, etc.)



Use Langevin or Newton equations

N . oE
m;ii; + v, = — — + n(?)

/ &rl' \
Friction coefficient T Gaussian white noise
Interactions

with Fluctuation-Dissipation relation
(n (1)) = 2ykpT5,;6(t — 1)

Theorem: the probability distribution P({r,(¢)}) converges
—pPE({r;})
e l

/

to the Boltzmann distribution at large time



Why is it difficult?

To discretize the equations, one must use time
steps of the order of 10"’

Large number of degrees of freedom (a few
thousand) plus few thousand water molecules

Empirical force fields not necessarily accurate
enough

Longest runs: around |us << folding time Ims- |s
Recently, runs of Ims on short proteins (ANTON)

Reason: Many metastable states and high barriers
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The problem of protein structure
prediction is too complicated for
MD

Solved by machine learning:
AlphaFold 2

Other problem: How do proteins
fold? How do they go from Unfolded
to Native State!
(Assuming unfolded and native states
are known)



Physical Picture

® |n given denaturant conditions, a protein spends a
fraction of its time in the native state and a fraction

of its time in the denatured state.
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Motivation from single molecule experiments
on proteins

WV. Eaton (NIH), G. Haran (Weitzman), M.Woodside (U.Alberta),...

® Examples:
® from denatured to native in native conditions

® Allosteric transition between A and B

Difficulty: looking for exponentially rare events



Single Molecule Experiments

. FRET experiments
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The Transition Path Problem

® [he problem:Assume a system can go
(stochastic dynamics) from state A to state

B:

® liquid to solid; nucleation; phase
changes,..

® Chemical reactions,...

® biopolymer folding: transition between
denatured and native state, allostery,...

® Which pathways (or family of pathways)
does the system use! VWhat are the
trajectories from A to B?



Related to the Schrodinger Bridge problem
Schrodinger (193 1): On the reversal of Natural Laws

How do you go from an initial probability distribution P,
to a final distribution P, in time fif points follow

Brownian Motion

Also related to Optimal Transport (Monge problem)



Langevin dynamics

The case of one particle in a potential U(x)
at temperature I’

Use Langevin dynamics

d?x der o0U B

mas gty =W

where 7 is the friction and ¢(?) is a
random noise

< C()C(t) >=2kpT~o(t — t')



Overdamped Langevin
dynamics

® At large enough time scale, mass term

negligible ,
mw’ ~ yw

m
T & 2m—
/y

- kT

YD

T~ 10~ s

D =10""cm?/s m ~ 5.10"*°kg



® Take overdamped Langevin (Brownian)
dynamics

dx 1 oU

MR - n(t
dt v Ox ()

e with Gaussian noise:

(n(tyn(t')) = zijw )
kT

® < is the friction coefficient: D) = ——

Y
Diffusion coefficient /

2kpT :
n(t) = \/?g(t) —— Normal variable




® Discretization of the Langevin equation

Euler-Maruyama

oU
afk

Tpa1 = xp — DBdt - N dt

with



If studying high (free) energy barrier crossing,
crossing events are exponentially rare.

Folding time of proteins: Ims-1s
Typical timestep: 10~ *°s

Very long simulation to hopefully see one folding event
due to high barrier and exponentially large number of
metastable states

Special purpose computer: ANTON (D.E. Shaw)
G0



® Discretization of the Langevin equation

Euler-Maruyama

oU
8£Ek

Tpr1 = T — DpPdt - ngdt

with
dt gt 2

d/2
P(ni) = (47‘('—D> e 4Dk

dl_ df2 _dt (xk+1_xk+Dﬂa_U>2
P(xk_l_l, t + dtlxk9 t) — e 4D dt axk

4dzD



Path integral representation

N N [ 2
dt Tkl — Tk D 0
P 79 — o
(flffatf’x O) /Hdm;wxp( 4DZ< dt +kBT8xk> )

fixed end points x; and x

. . e
Continuous limit Onsager-Machlup

/ (Ito)

r(ty)=ry N
P(rg,tylr,t) = / Dr(T)e” i o dr (242 V0)
r(t)=r

_ 6—5<U<rf>—U<r>>/2/

r(ty)=ry

Dr(r)e o dr 35+ 5k V)

(t)=r \
where the effective potential V is given by

Stratonovich
kg1

2
2VU

Loy -

Vir) = -



Path Integral = Feynman Path integral
= Schroedinger equation

kT
y

D

® Dominant Paths: Saddle-Point expansion:
Minimise action: Newton equation =

2 oV
Instanton ¥ = with B.C. Xx;, x;

y2 or

® | ow dimension: solve Schrodinger equation



Transition path sampling

Path integral representation

dt Thiy1 — Tk D U\’
P(xf tf‘aj 0) /Hdwkexl)( 4DZ( dt +kBT8:z:k> )

» Construct an initial trajectory with fixed end
points x; and x ¢

» Deform the trajectory locally and accept or
reject with a Monte Carlo algorithm

25
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Initial trajectory from r; to r;

» Deform the trajectory locally and accept or reject
with a Monte Carlo algorithm

 Difficulties:
* Huge sampling space
* Depends very much on initial trajectory



Bridges (Doob)

 Consider paths starting at (x(,0) and
conditioned to end at (xf,ty)

* The conditional probability for such a path
to be at (x,7) is given by
P(x,t) = P(x,t|xs, trandxg, 0)

1
P(xy,tso,0)

FP
adjoint FP /
P(x,t) = P(x,t|zg,0)

\ Q(x,t) = P(xy, tylx,t) 27

Px,t) = Q(x,t)P(x,t)




Q(x, 1)
P(z,t) /" (x,t)
(CC@, O)
Pla.t) = L @ )Pl t)

FP equation
adjoint FP equation /
P(x,t) = P(z,t|x,0)

AN

Q(z,t) = Py, ts|z,t)



Fokker-Planck and adjoint

P _p? (P40 /

ot Or \ 0r " Ox
adjoint FP
0Q  0°Q ,0U0Q
ot _Dax2 | Dﬁ@x Ox
H_ QP+QP
conditional probability - P(zs,tslzo,0)
N oP 0 (0P 0

29



Modified Langevin equation for conditioned
paths

de _ D oU  , 0lnQ

dt _kBT ox ox ()

where
Q(x,t) = P(xy,tf|z,t)

Equation is Markovian (but depends
through Q on the whole future of the
trajectories!)

No bias in the statistics of the trajectories
Could be obtained from Girsanov theorem

30



 Example: Brownian bridges

U(x) =0

1 (z p—z)2

ty —t)

» Conditioned Langevin equation becomes

- n(t)

Qa.1) = Plag.tylz,t) = \/ Ty L

dr Ty —x
dt  ty—t

d_X — xf - X —> average i_s linear
dt tf — in time

31



Free Langevin
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Constrained Langevin
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® Example: Brownian meanders = Brownian
walks constrained to stay with x>0 during
fixed time. Use mirror image
0lo b

plogQ@z,t) n(t)

. _
! ox
q (@p-a)? 1 (@ptw)?
- (ﬁ;:f)e AD " tp—t _|_(izj:i‘f)6 AD " ty—t t
— T Gy Gpte)? +(t)
e 4D ty—t _ o 4D ty—t
® |ntegrate for
s > 0
2132
dx 2 CXP (_4D(tf—t)) )
- — po 77
dt \/47TD(tf — t) Erf(\/4D tf—t)>
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® Example: Brownian excursions: Brownian
walks x>0, starting around x=0 and ending
at x=0.

r = 2 + n(t
Ox (t)
, (wp—x)? (@ pta)?
O L e L
_ f- f=
N 1 (ep-o)? 1 (epta)? +(t)
6_4D tp—t —6_4D tp—t

® Take the limit ¢ — 0

dx 2D (. z” +n(t)
T oD(t;—1)) "



Example: Brownian excursions above a line
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Example: the Harmonic oscillator (Ornstein-
Uhlenbeck process)

U(z) = %KxQ
1
X =——Kx+ n()
Y
Bridge equation

dr K a:f—a:cosh (ty — 1)
dt sinh & (f—t)

- n(t)

Note that this equation does not depend on
the sign of K: same conditioned trajectsries
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Knotting-Unknotting of DNA,

Vortices, Defect Lines, etc...
(with C. Micheletti, SISSA, Italy)

® Many knots in DNA

® Jopoisomerase | and |l can unknot DNA by
passing two DNA strands through each
other (cut and reconnect)



Deux
brins
d'ADN

How do knots transform in DNA!?

& Coupure
ey des deux
¥ B8 brins

Mathematicians use a topological approach:
what are the minimum sets of moves to go
from one knotted structure to another

This approach ignores the dynamics

We propose an approach based on bridges h

Effet des topoisomérases II
(eucaryotes) qui démélent
les noeuds d'ADN

0



Consider a 1/2 flexible Gaussian chain

e (8 [ w8 o
/ \

Elasticity Bending energy

Langevin-Rouse dynamics

dr(s,t) D 3 0%r O*r
dt a? 0s? Os*




Assume you know the chain configuration ro($) at time 0
and the final chain configuration ’I“f(s) at time 1

The Langevin Bridge equation is

0log ()
or(s,t)

dr(s,t) _ D ( 3 0%r _Ki“r) L 9D
dt

CL2 882 884 o BF(S) T 77(37?5)

with

Q = P(r¢(s),trlro(s),0)

Everything can be solved exactly in Fourier space



dr DQ)
— = = _—DQ, 7, n (Nn te) — 7 (t —Dﬂn(tf—t)) 5o (1
dt " Gnh DOt — 1) Falts) = Talt)e 11 (t)
where
3
_ 2 4
Qa
27T
Cdn — _n
N

Solve numerically in Fourier space, then
go back to real space
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Figure 1. Transition pathway between an unknotted ring and a left-handed 5; knotted ring. The
root-mean-square distance (RMSD) to the initial and final structures at various stages of the trajectory
are shown in panel (a). Instantaneous configurations at selected times are highlighted. The average
crossing number and writhe are shown in panel (b). The overlayed colored background indicates the
non-trivial topological states, see legend.
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Figure 2. Transition pathway between an unknotted ring and a 4; knotted ring. The shown observables
are the same as in Figure 1.
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in Figure 1.



For low-dimensional system, it is possible to compute the
function Q by computing the eigenvectors and eigenvalues
of the Fokker-Planck operator and using its spectral
decomposition. The exact bridge equation becomes

Q(x,t) = P(xy,tf|z,t)
_ G—B(U(wf)—U(w))/2<xf‘G—H(tf—t)m

— o BU(zs)-U(z))/2 Z e_Eo‘(tf_t)\I’a(mf)\I’a(m)

(O ()
W, () Wa (1)

dr S
QDZ

— - n(t)

O{



* For large number of degrees of freedom, we
don’t know how to calculate the function
Q(x,t). We need to make approximations.

* Some important requirements:
—Q(x,1)>0

—Detailed balance: Q(x,t) = P(z¢,tf|z,1)
and we should have

P(ry,tyle,t) U0
P(z,tslzy,t)

52
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Short transition path time
approximation

In the Kramers picture, there are 2 time
scales:

—Kramers time, or waiting time, or folding time
AFE

Tie ~ eFBT «— Ims-Is
— Transition path time (A. Szabo), Instantons

AFE — < |ILLS
kT

TTrp ~ lOg

—\We have

TTrp << TK

54



Simple calculation of the TPT distribution

Inverted parabolic potential . O |
dr = ?F(x) +1(7) Equation is linear: / \
U can be solved J/ \*
Fx)=——=—-Kx
0x t _x(; ’ IZCO
x(t) = xoe_Q’ + J dre (1)
Q = KpD 0

The solution is a linear combination of Gaussians, so it is a Gaussian variable

OA(1) = / dx P(x,7| -x0,0)  Absorption Probability

— (0(t — trp))

prp(t) = 294

at CED



aQa

prp(t) = o

This equation neglects paths which return to the left side.
Very good approximation for high barrier

2 G'(1)e CW

pre(t) = VR | Ef(VBE) \
Paths which never cross
ook
Q= Kly



BE  2Qe2% XD [—5E (1 — e_mt)_l}
prer(t) = 4/ =7
T (1 — e~ 22) / 1 — Erf (m)

where = BD|Uy”|

BEO 1 Z—,8E0€2z

7 1— Erf (v/BEy) c
Gumbel law

T=1 |
E=500 7

\“ x 7/ 770N
A TR
e \
I \ -
/«‘“‘ ‘i\\ \"1““
A\ \
{ \ W\

( ““ a L C
HN\GN\ E varies from 10 to 500 | trprT = o] log (6 5E0)

C = 0.57721

Euler constant

10



It is possible to do the calculation with inertia term
Expressions are more complicated when inertia present

2 2,8mx2 2
pTP(t)t:Oe_G ) = exp (‘ % 0) pTe(t) ~t—0 €Xp <— 6?}0)
PP (t) ~i—soo €XP (—AL) pTP(t) ~t—oo €xp (—E22)

B 2m
Underdamped Overdamped



High Barrier

Low Barrier
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A useful form of the Bridge
equation
Original bridge equation

1
i=—-VU+2DVInQ +n(t)
i Onsager-Machlup

Using the path-integral representation

Q- (r,t) = P(ry,trlr,t) |
Stratonovich

r(ty)=ry Lt . >
:/ Dr(T)e_ﬁftde(”?VU) /
(t)=r

r(ts)=ry Y (£ V()

_ B~ U<r>>/2/ Dr(r)e
(1)=

where the effective potential is given by

1 kpT
V(r) =4 (VU)* - =2=V°U




After some simple transformations, the bridge equation
becomes:

. rp—rt) E/tf ty—17 2k, T
I = r— ~l) dr (tf —t) (VV(r(7)))o + » (1)

2 _ kT
2

1
4

V(r) (VU) VU

where the bracket (---)g denotes the average over all paths joining (r,t) to (rs,tr)
weighted by Q).

® If no potential V=0, one recovers the standard free
Brownian bridge equation

® The only singular term is the free Brownian bridge term.
It is the term which conditions the paths

® Highly non-Markovian and depends on the future of the
trajectory



Zero Temperature

At T=0, only one trajectory and the equation becomes
, _I‘f—I'O(t)_E/tf ty —T
o= = | dr () V()

where Vy(r) = 3 (VU)?

taking a time derivative of the above equation we get

boundary conditions ro(0) = r; and ro(ty) = ry

This is the exact zero temperature equation: Instanton
Theory and String Method.



Weak Fluctuations

If fluctuations of trajectories are small (low T or Transition
paths), use the approximation

(VV(r(7)))q = VV({r(1))q)

The Bridge equation becomes

Not Markovian.
Valid atorder | inT



|terative Solution

This is a Non-Linear, Integro-Differential, non Markovian

Stochastic Equation
Solve it by iteration. Discretize a la Euler-Maruyama

_ () -1 !
P () 4 1) = o) ()t LK) gy 2 (tf K dt) vV (& (k) + /2DdD)E (k)

Iterate above equation



Choice of Initial Trajectory

® Use a free Brownian bridge trajectory
r _
R
tr—1
® |terate from there

+ (1)



Example: Quartic double well

 We take
U(x) = i(a? —1)?
V(2) = —— (U2(z) — 25 TU" ()

66




N

Langevin

0 200 400 600 800 1000

transition region

L L I L I L I L L
554.5 555 5555 556 556.5 557 5575 67




Trajectories

| |
-
| . /|
- “‘\I \ 1 |“ ‘ ! TR
W
It 0 i
-1y \I vl

I I I ! | ! | ! 2 ! I | I . | . |

Trp & 3.5

Exact trajectories (in black) obtained from spectral
decomposition.

Approximate trajectories in red (with same noise)
68



The Mueller potential

V(wg) = 3 dvesp [osle — a0+ bila — ad)y = o) + ey o)’

where A = (—200, —100, —170,15), a = (—1,—1,—6.5,0.7), b = (0,0, 11,0.6),




A) The Mueller potential

2 T

1.5

0.5

-0.5

C) Trajectories B——>C

2

B) Traiectories A—>»B

2

2




Mexican Hat Potential

1
U, y) = (0 + 2 = 17



A) 100 paths with T=0.1 and tf="7

1.5

0.5

B) 100 paths with T =0.1 and tf= 10

1.5

0.5

Langevin bridge trajectories on the Mexican hat potential.

U(z,y)

1

L@y = 1)



Test of the method:
Allosteric transition of
Adenylate Kinase

Work with P. Koehl (UC Davis) and M.
Delarue (Institut Pasteur, Paris)

Transition studied by several groups: good
benchmark

System has two (meta)stable configurations
PDB | AKE.pdb and 4AKE.pdb

Make a Gaussian Elastic Network model for
each structure



® Define mixed elastic network model by

Utot — UM?Z:L'—ENM + Ucollision

1

UMiz—ENM = —ﬁ—log(e_ﬁmm + e PmUn)

Ua =Y kijCijldyy — dj})?
ij
Up =Y kiCij(dij — d2)* + AU
ij
® Collision term to avoid steric clashes during
the transition

Ucollision — € Z(di)12 — Z Uij
(]

i,] 1,



® Solve the low temperature bridge equations and
generate trajectories.
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Conclusion

Method is efficient, fast and parallelizable
All trajectories are statistically independent
Possibility to include the solvent

Can be generalized to discrete systems.

Working on applying it to all-atom
description.
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APPENDIX: COMPUTING THE GRADIENT OF In(Q)

In this appendix, we prove the central equation of this article,
namely, Eq. (17). For that matter, we need to compute the gradient
of the logarithm of Q.

We have

r(t;)=r i (1
awty= [ De(re (™) )

which we discretize by splitting the time interval t; —¢ in N -k
intervals of size dt,

tr=t<tfp =t+dt <tp, < - <tNo1<IN=F
with
ti=t+ (i—k)dt
forallie [k,N]and
tr —t=(N-k)dt

We write

= Nt ()’
Q(r’ t) = [rN rfdl'k+1 s dI'N_leI: Zik ( td)d‘ +DV2 V(rl)):l.
Ir.=r

Wehave 7 _ _
IN=If _ Ny N-1 (fl+1 l'l) dt Vv (rk+1 r) dt 174
vVQ(r.t) = f dtgyy -« -dry-jel Zl:k“( it~ o2 (rl)) Ve[ ( i "oy (r))]
Ip=r
i 2 1r 2
IN=If _21\1—1 ((’l+1"1) +£V(rl)) I, — T d [ ((’k+1‘f) +iV(r)):|
— dr . dl‘ el I=k+1 4Ddt Dy? ] VV r X e 4Ddt Dy?2
frk=r N | 2Ddt Dy (r)

ry=r —_ N-1 (fl+1—fl) dt dt (rk+1—‘) dt
= f N fdrk_H N -dl‘N—le- Zl=k+1( i T D2 V(rl)) _VrkH _ DYZVV(I')] y e[ ( TR V(r))]
I

k=T



We may then integrate by part the term V,,,, and obtain

vQ(r,t) = -[rk:;

% iy = Yyl
2Ddt

— Nl M _dt
fdrk+1"'drN—1€[ Z[:k+z( it V(l‘l))]

V) + vv<r>>]

« e[‘((r“i;dkt“) +(r"1})d,’) 3 (V) V)|

(A3)
By repeating this procedure, we obtain
r -ty dr '\
V00 = [ | T - S v
T 1*1’ 2 t
oo T (T g ve) | (A4)

By summing these (N — k) equations [Eqs. (A2), (A3), and (A4)]
and dividing by (N - k), we obtain

vQ(rt) =

l'N=l’f
_J = r,t d e drn_
2D(t )Q( )~ Dy? fk Tiy1 IN-1

N1 () a ‘
% e[ Zl:k+1 ( 14Ddtl + V( l))] Nl k((N_ k)dtVV(l')
+ (N-k-1)dtVV(rpe) +---+dtVV(rn-1)). (A5)

Taking the continuous limit of Eq. (A5) yields

2DV In Q(r,t) =

Ml 15 v
where the average (- - -) is done over all the Langevin paths starting
at (r,t) and ending at (rs, t¢),

1 r(ty)=ry
Dr(t
Q(r,t) Jr()=r )

(e ve)

(VV(r(r))) =

x vV(r(r)). (A6)
The Langevin bridge equation, thus, becomes

dr _y-r 2
dt  t—t 2

S a2 v e, @

which is Eq. (17) of this article.



