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• The Folding Path problem

• Langevin dynamics  and Path integral 
representation 

• Brownian Bridges

• some analytic examples

• Knotting-unknotting of DNA with 
topoisomerase

• Transition Path Time distribution

• A useful form of the Bridge equation

• Allosteric transition of Adenylate Kinase



Proteins exist under 2 forms

• Proteins are polymers made of 20 amino-
acids. They exist under 2 forms 

• Folded or Native: globular unique 
conformation, biologically active 

• Unfolded: random coil, biologically inactive 
• Proteins are small objects: at equilibrium, 

they fluctuate (thermally) between the 2 
forms.
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The Protein Folding problem
• A sequence of amino-acids is given by the 

biologists. 

• What is the 3d shape of the corresponding 
protein?

• To study this problem, use Molecular 
Dynamics: Karplus, Levitt and Warschel, 
Nobel prize in Chemistry 2013

• More recently, use Machine Learning: 
AlphaFold2: Hassabis, Jumper, Nobel prize 
in Chemistry 2024 

ANTON



Molecular Dynamics

• Proteins are made of amino-acids, 
which are themselves made of atoms

• Each configuration of atoms has a 
certain energy

• Parametrize the interaction between 
constituent atoms (valence bond, 
Lennard-Jones, Coulomb, etc.)

{ri}



Use Langevin or Newton equations

mi
··ri + γi

·ri = − ∂E
∂ri

+ ηi(t)

Interactions
Gaussian white noise

⟨ηi(t)ηj(t′ )⟩ = 2γikBTδijδ(t − t′ )
with Fluctuation-Dissipation relation

Theorem: the probability distribution  converges

to the Boltzmann distribution at large time  

P({ri(t)})
e−βE({ri})

Z

Friction coefficient



• To discretize the equations, one must use time 
steps of the order of 

•  Large number of degrees of freedom (a few 
thousand) plus few thousand water molecules

• Empirical force fields not necessarily accurate 
enough

• Longest runs: around 1  s << folding time 1ms- 1s

• Recently, runs of 1ms on short proteins (ANTON)

• Reason: Many metastable states and high barriers

10−15s

µ

Why is it difficult?



    
Next: Folding Funnels and Free Up: PROTEIN FOLDINGINVERSE PROTEIN Previous: Energy
Landscapes 

Smooth vs. Rugged Landscapes
The roughness of an energy landscape may be quantified by the presence of structural hierarchy: within a
closed contour of constant elevation, there exist several closed contours of lower elevation, within each of
which are more contours of lower elevation, etc. Landscapes characterised by a hierarchy of sub-valleys
within valleys are said to be rugged; trivially hierarchical landscapes, in which each closed contour
contains not multiple but a single closed contour of lower elevation, are called smooth.

Deterministic (downhill) dynamics on a rugged landscape yields a myriad of local minima nearby in
energy but conformationally distant and not related by any symmetry. An ensemble of systems on this
landscape shows little preference for the ground state. Similar difficulties can face stochastic systems (say,
in thermal equilibrium at finite temperature) operating on a rugged landscape: below the glass transition
temperature, mobility slows to unrealistic time scales and the system becomes effectively non-ergodic.
This corresponds to deterministic exploration on a still rugged free energy landscape.

  



The problem of protein structure 
prediction is too complicated for 

MD
Solved by machine learning: 

AlphaFold 2

Other problem: How do proteins 
fold? How do they go from Unfolded 

to Native State?
(Assuming unfolded and native states 

are known)



• In given denaturant conditions, a protein spends a 
fraction of its time in the native state and a fraction 
of its time in the denatured state.

!
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Experimental determination of upper bound for transition path 
times in protein folding from single molecule photon-by-photon 
trajectories 
!
Hoi Sung Chung*, John M. Louis, and William A. Eaton* 

!

"#$%&#'%&(!%)!*+,-./#0!1+(2./23!4#'.%5#0!652'.'7',!%)!8.9,2'.:,!#5;!8.#$,',2!#5;!<.;5,(!8.2,#2,23!4#'.%5#0!652'.'7',2!%)!=,#0'+3!>,'+,2;#3!?83!
@ABC@DAE@A3!F#57#&(!GA3!@AAC!!

!
Transition paths are a uniquely single molecule property not yet 
observed for any molecular process in solution. The duration of 
transition paths is the tiny fraction of the time in a single mole-
cule trajectory when the process actually happens. Here we re-
port the determination of an upper bound for the transition path 
time for protein folding from photon-by-photon trajectories. FRET 
trajectories were measured on single molecules of the dye-
labeled, 56-residue two-state protein GB1, immobilized on a glass 
surface via a biotin-streptavidin-biotin linkage. Characterization 
of individual emitted photons by their wavelength, polarization, 
and absolute and relative time of arrival following picosecond 
excitation allowed the determination of distributions of FRET 
efficiencies, donor and acceptor lifetimes, steady state polariza-
tions, and waiting times in the folded and unfolded states. Acqui-
sition of single molecule spectra enabled a clear distinction be-
tween jumps in the FRET efficiency due to folding or unfolding 
transitions of the polypeptide and those corresponding to a pre-
viously unknown photophysical change of the commonly-used 
donor dye, Alexa 488.  Comparison with the results for freely 
diffusing molecules showed that immobilization has no detect-
able effect on the structure or dynamics of the unfolded protein 
and only a small effect on the folding/unfolding kinetics. Statisti-
cal analysis of the photon-by-photon trajectories yields a transi-

tion path time less than 200 !s, more than 10,000 times shorter 
than the mean waiting time in the unfolded state (the inverse of 
the folding rate coefficient). The theory of diffusive barrier cross-
ings shows that this upper bound for the transition path time is 
consistent with previous estimates of the Kramers pre-
exponential factor for the rate coefficient. The theory also pre-
dicts that for smooth free energy barriers the transition path time 
is remarkably insensitive to the folding rate, with only a 2-fold 
difference for rate coefficients that differ by 10

5
-fold.   

A detailed description and understanding of mechanisms of protein 

folding has been one of the great challenges to biophysical science. 

The simplest system to study, and the one that has produced the most 

insights, is a protein exhibiting two-state behavior (1-7). A two-state 

protein has only two-populations of molecules in equilibrium and at 

all times in kinetic experiments – folded and unfolded. In ensemble 

folding experiments kinetics are studied by rapidly changing solution 

conditions, e.g. the temperature or denaturant concentration, and 

monitoring the relaxation of the two populations to their new equi-

librium ratio with probes such as fluorescence, circular dichroism or 

infrared spectroscopy. Single molecule kinetics, on the other hand, 

can be studied at equilibrium. As can be seen from the schematic of 

a trajectory in Fig. 1, the dynamical nature of equilibrium is dramati-

cally demonstrated when observing F!rster resonance energy trans-

fer (FRET) in a single molecule fluorescence experiment. There are 

fluctuations due to shot noise about a mean value in each state, inter-

rupted by what appear to be instantaneous jumps in FRET efficiency 

signaling folding or unfolding. The residence or waiting times in 

each state are exponentially distributed, with the mean time in the 

unfolded and folded segments of the trajectories corresponding to the 

inverse of the folding and unfolding rate coefficients, respectively. 

Rate coefficients can, albeit with assumptions, be much more eas-

ily obtained from a combination of ensemble kinetic and equilibrium 

time
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experiments, where the former measure the sum of the rate coeffi-

cients and the latter their ratio. The unique information in a single 

molecule experiment is contained in the very rapid transitions be-

tween the two states when the protein is either folding or unfolding.  

Indeed, all mechanistic information about folding and unfolding is 

contained in these so-called transition paths (Fig. 1), which can only 

be observed for single molecules. The duration of the transition path 

is the tiny fraction of the time in a trajectory that it takes for a protein 

to fold or unfold when it actually happens (8). With the possible 

exception of one study of RNA folding (9), transition path times 

have not been measured for any molecular process in solution.  

A realistic goal for single molecule FRET experiments is to meas-

ure transition path times for protein folding and unfolding and, ulti-

mately, to obtain distance versus time trajectories during the transi-

tion paths. The distribution of transition path times and of distance 

versus time trajectories will be totally new kinds of demanding tests 

for atomistic molecular dynamics simulations of folding (10), which, 

if accurate, contain everything one would ever want to know about a 

protein folding mechanism. If more than one distance could be 

measured simultaneously, e.g. by using 3 or more dyes (11-13), 

model-independent information on the width of the microscopic 

pathway distribution could be derived from correlations among the 

distances (14).  

In this work we take a major step toward these important goals by 

determining an upper bound for the transition path time from single 

molecule FRET trajectories of the 56 residue two-state protein GB1, 

immobilized on a glass surface by a biotin-streptavidin-biotin link-

age (Fig. 2). Although the idea that much could be learned about 

protein folding mechanisms from such trajectories has been apparent 

since the very early days of single molecule spectroscopy, an indica-

tion of the difficulty in measuring reliable trajectories is evidenced 

by the fact that there have only been 3 additional studies since the 

first measurements on single immobilized proteins by Hochstrasser 

and coworkers almost 10 years ago (15-18). The practical problem!
!
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• Examples: 

• from denatured to native in native conditions 

• Allosteric transition between A and B

Motivation from single molecule experiments 
on proteins

Difficulty: looking for exponentially rare events

W. Eaton (NIH), G. Haran (Weitzman), M. Woodside (U. Alberta),…
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FRET experiments

Single Molecule Experiments
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Transition paths are a uniquely single molecule property not yet 
observed for any molecular process in solution. The duration of 
transition paths is the tiny fraction of the time in a single mole-
cule trajectory when the process actually happens. Here we re-
port the determination of an upper bound for the transition path 
time for protein folding from photon-by-photon trajectories. FRET 
trajectories were measured on single molecules of the dye-
labeled, 56-residue two-state protein GB1, immobilized on a glass 
surface via a biotin-streptavidin-biotin linkage. Characterization 
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and absolute and relative time of arrival following picosecond 
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tions, and waiting times in the folded and unfolded states. Acqui-
sition of single molecule spectra enabled a clear distinction be-
tween jumps in the FRET efficiency due to folding or unfolding 
transitions of the polypeptide and those corresponding to a pre-
viously unknown photophysical change of the commonly-used 
donor dye, Alexa 488.  Comparison with the results for freely 
diffusing molecules showed that immobilization has no detect-
able effect on the structure or dynamics of the unfolded protein 
and only a small effect on the folding/unfolding kinetics. Statisti-
cal analysis of the photon-by-photon trajectories yields a transi-
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ings shows that this upper bound for the transition path time is 
consistent with previous estimates of the Kramers pre-
exponential factor for the rate coefficient. The theory also pre-
dicts that for smooth free energy barriers the transition path time 
is remarkably insensitive to the folding rate, with only a 2-fold 
difference for rate coefficients that differ by 10
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A detailed description and understanding of mechanisms of protein 

folding has been one of the great challenges to biophysical science. 

The simplest system to study, and the one that has produced the most 

insights, is a protein exhibiting two-state behavior (1-7). A two-state 

protein has only two-populations of molecules in equilibrium and at 

all times in kinetic experiments – folded and unfolded. In ensemble 

folding experiments kinetics are studied by rapidly changing solution 

conditions, e.g. the temperature or denaturant concentration, and 

monitoring the relaxation of the two populations to their new equi-

librium ratio with probes such as fluorescence, circular dichroism or 

infrared spectroscopy. Single molecule kinetics, on the other hand, 

can be studied at equilibrium. As can be seen from the schematic of 

a trajectory in Fig. 1, the dynamical nature of equilibrium is dramati-

cally demonstrated when observing F!rster resonance energy trans-

fer (FRET) in a single molecule fluorescence experiment. There are 

fluctuations due to shot noise about a mean value in each state, inter-

rupted by what appear to be instantaneous jumps in FRET efficiency 

signaling folding or unfolding. The residence or waiting times in 

each state are exponentially distributed, with the mean time in the 

unfolded and folded segments of the trajectories corresponding to the 

inverse of the folding and unfolding rate coefficients, respectively. 

Rate coefficients can, albeit with assumptions, be much more eas-

ily obtained from a combination of ensemble kinetic and equilibrium 
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experiments, where the former measure the sum of the rate coeffi-

cients and the latter their ratio. The unique information in a single 

molecule experiment is contained in the very rapid transitions be-

tween the two states when the protein is either folding or unfolding.  

Indeed, all mechanistic information about folding and unfolding is 

contained in these so-called transition paths (Fig. 1), which can only 

be observed for single molecules. The duration of the transition path 

is the tiny fraction of the time in a trajectory that it takes for a protein 

to fold or unfold when it actually happens (8). With the possible 

exception of one study of RNA folding (9), transition path times 

have not been measured for any molecular process in solution.  

A realistic goal for single molecule FRET experiments is to meas-

ure transition path times for protein folding and unfolding and, ulti-

mately, to obtain distance versus time trajectories during the transi-

tion paths. The distribution of transition path times and of distance 

versus time trajectories will be totally new kinds of demanding tests 

for atomistic molecular dynamics simulations of folding (10), which, 

if accurate, contain everything one would ever want to know about a 

protein folding mechanism. If more than one distance could be 

measured simultaneously, e.g. by using 3 or more dyes (11-13), 

model-independent information on the width of the microscopic 

pathway distribution could be derived from correlations among the 

distances (14).  

In this work we take a major step toward these important goals by 

determining an upper bound for the transition path time from single 

molecule FRET trajectories of the 56 residue two-state protein GB1, 

immobilized on a glass surface by a biotin-streptavidin-biotin link-

age (Fig. 2). Although the idea that much could be learned about 

protein folding mechanisms from such trajectories has been apparent 

since the very early days of single molecule spectroscopy, an indica-

tion of the difficulty in measuring reliable trajectories is evidenced 

by the fact that there have only been 3 additional studies since the 

first measurements on single immobilized proteins by Hochstrasser 

and coworkers almost 10 years ago (15-18). The practical problem!
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• The problem: Assume a system can go 
(stochastic dynamics) from state A to state 
B:

• liquid to solid; nucleation; phase 
changes,..

• Chemical reactions,…

• biopolymer folding: transition between 
denatured and native state, allostery,…

• Which pathways (or family of pathways) 
does the system use? What are the 
trajectories from A to B? 

The Transition Path Problem



Related to the Schrödinger Bridge problem
Schrödinger (1931): On the reversal of Natural Laws

How do you go from an initial probability distribution 
to a final distribution  in time  if points follow 
Brownian Motion

Also related to Optimal Transport (Monge problem)

P0
Pf tf



U(x)
T

m
d2x

dt2
+ γ

dx

dt
+

∂U

∂x
= ζ(t)

γ ζ(t)

Langevin dynamics

• The case of one particle in a potential         
at temperature     

• Use Langevin dynamics

• where    is the friction and        is a 
random noise

< ⇣(t)⇣(t0) >= 2kBT��(t� t0)



Overdamped Langevin 
dynamics

• At large enough time scale, mass term 
negligible

mω2 ≈ γω

τ ≈ 2π
m

γ

γ =
kBT

D

τ ≈ 10−13s
D = 10−5cm2/s m ≈ 5.10−26kg



• Take overdamped Langevin (Brownian) 
dynamics

• with Gaussian noise: 

•     is the friction coefficient: �

dx

dt
= � 1

�

@U

@x
+ ⌘(t)

D =
kBT

�
Diffusion coefficient

h⌘(t)⌘(t0)i = 2kBT

�
�(t� t0)
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ω(t) =

√
2kBT

ε
ϑ(t) Normal variable



• Discretization of the Langevin equation

•

xk+1 = xk �D�dt
@U

@xk
+ ⌘kdt

P (⌘k) =

✓
dt

4⇡D

◆d/2

e�
dt
4D ⌘2

k

with

Euler-Maruyama



If studying high (free) energy barrier crossing, 
  crossing events are exponentially rare. 

Folding time of proteins:  1ms-1s

Typical timestep:           s10�15

Very long simulation to hopefully see one folding event
due to high barrier and exponentially large number of 

metastable states

Special purpose computer: ANTON (D.E. Shaw)



• Discretization of the Langevin equation

•

xk+1 = xk �D�dt
@U

@xk
+ ⌘kdt

P (⌘k) =

✓
dt

4⇡D

◆d/2

e�
dt
4D ⌘2

k

with

Euler-Maruyama

P(xk+1, t + dt |xk, t) = ( dt
4πD )

d/2
e− dt

4D ( xk+1 − xk
dt + Dβ ∂U

∂xk )
2



P (xf , tf |xi, 0) =
Z NY

k=1

dxk exp

 
� dt

4D

NX

k=1

✓
xk+1 � xk

dt
+

D

kBT

@U

@xk

◆2
!

Path integral representation

• fixed end points  
•

xi and xf

where the effective potential  is given byV

3

This equation is called a bridge equation (cite). The additional force term 2Dr lnQ1 (w.r.t. the original Langevin
equation) conditions the paths and guarantees that they will end at (rf , tf ). We can use a path integral representation
for Q1 (cite)

Q1(r, t) = P (rf , tf |r, t)

=

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e�

1
4D

´ tf
t d⌧(ṙ+ 1

� rU)2 (9)

= e��(U(rf )�U(r))

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(10)

where the effective potential V is given by

V (r) =
1

4
(rU)2 � kBT

2
r2U (11)

The driving term Q1(r, t) is a sum over all paths joining (r, t) to (rf , tf ), properly weighted by the so-called Onsager-

Machlup action (cite) 1
4D

´ tf
t d⌧

⇣
ṙ+ 1

�rU
⌘2

.
The above equations are obtained by transforming the Ito form of the path integral (9) into the Stratonovich form

(10), when expanding the square, and using the identity of stochastic calculus []

ˆ tf

t
d⌧ ṙrU(r(⌧)) = U(rf )� U(r)�D

ˆ tf

t
d⌧r2U(r(⌧)) (12)

Defining

Q(r, t) =

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(13)

the bridge equation (8) becomes

ṙ = 2Dr lnQ+ ⌘(t) (14)

In the Supplemental Material, using the path integral representation (13) and performing several integrations by
part, we show that this equation can be exactly recast in the following integral equation

ṙ =
rf � r(t)

tf � t
� 2

�2

ˆ tf

t
d⌧

✓
tf � ⌧

tf � t

◆
hrV (r(⌧))iQ + ⌘(t) (15)

where the bracket h· · · iQ denotes the average over all paths joining (r, t) to (rf , tf ), weighted by the action of eq.
(13)

hrV (r(⌧))iQ =
1

Q(r, t)

ˆ r(tf )=rf

r(t)=r
Dr(⌧)rV (r(⌧)) e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(16)

and the Gaussian noise is defined by eq.(3). Note that the first term in the r.h.s of equation (15) guarantees that
the constraint r(tf ) = rf is satisfied. It is the only term which is singular at time tf . In fact, in the case of a free
Brownian particle, the effective potential V vanishes, and we recover the standard equation for free Brownian bridges

ṙ =
rf � r(t)

tf � t
+ ⌘(t) (17)

The above equation (15) is the fundamental equation of this article and will be used to generate constrained paths.
This equation is a non linear stochastic equation. It is Markovian, in the sense that the r.h.s. of (15) depends only
on r(t). However, the presence of the average over all future paths makes it difficult to use.

Onsager-Machlup
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Stratonovich

A useful form of the Bridge 
equation

Original bridge equation

2

Consider a system of particles, with N degrees of freedom, represented by a vector r. The particles of the system
interact through a conservative force derived from a potential U . The system is evolved using overdamped Langevin
dynamics

ṙ = � 1

�
rU + ⌘(t) (1)

where F = �rU is the force acting on the system, ⌘ is the Gaussian random force, and � is the friction coefficient.
The friction coefficient is related to the diffusion constant D and the temperature T through the Einstein relation

� =
kBT

D
=

1

D�
(2)

where � = 1/kBT . The friction is usually taken to be independent of T , so that the diffusion coefficient D is
proportional to the temperature T .

The moments of the Gaussian white noise are given by

h⌘a(t)i = 0

h⌘a(t)⌘a0(t0)i = 2D�aa0�(t� t0) (3)

where the index a denotes the component of the vector ⌘(t). As usually in the Langevin equation, the random force
⌘(t) is of order

p
T .

The probability distribution function P (r, t|ri, 0) = P (r, t) for the system to be at position r at time t given that
it was at position ri at time 0, satisfies a Fokker-Planck (FP) equation

@P

@t
= Dr (rP + �rU(r)P ) (4)
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(5)
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@Q1

@t
= �Dr2Q1 +D�rU(r)rQ1 (6)
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@P
@t

= Dr (rP +r (�U(r)� 2 lnQ1)P ) (7)
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ṙ = � 1

�
rU + 2Dr lnQ1 + ⌘(t) (8)

Using the path-integral representation

3

This equation is called a bridge equation (cite). The additional force term 2Dr lnQ1 (w.r.t. the original Langevin
equation) conditions the paths and guarantees that they will end at (rf , tf ). We can use a path integral representation
for Q1 (cite)

Q1(r, t) = P (rf , tf |r, t)
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ˆ r(tf )=rf

r(t)=r
Dr(⌧)e�

1
4D

´ tf
t d⌧(ṙ+ 1

� rU)2 (9)

= e��(U(rf )�U(r))

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(10)

where the effective potential V is given by

V (r) =
1

4
(rU)2 � kBT

2
r2U (11)

The driving term Q1(r, t) is a sum over all paths joining (r, t) to (rf , tf ), properly weighted by the so-called Onsager-

Machlup action (cite) 1
4D

´ tf
t d⌧

⇣
ṙ+ 1

�rU
⌘2

.
The above equations are obtained by transforming the Ito form of the path integral (9) into the Stratonovich form

(10), when expanding the square, and using the identity of stochastic calculus []

ˆ tf

t
d⌧ ṙrU(r(⌧)) = U(rf )� U(r)�D

ˆ tf

t
d⌧r2U(r(⌧)) (12)

Defining

Q(r, t) =

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(13)

the bridge equation (8) becomes

ṙ = 2Dr lnQ+ ⌘(t) (14)

In the Supplemental Material, using the path integral representation (13) and performing several integrations by
part, we show that this equation can be exactly recast in the following integral equation

ṙ =
rf � r(t)

tf � t
� 2

�2

ˆ tf

t
d⌧

✓
tf � ⌧

tf � t

◆
hrV (r(⌧))iQ + ⌘(t) (15)

where the bracket h· · · iQ denotes the average over all paths joining (r, t) to (rf , tf ), weighted by the action of eq.
(13)

hrV (r(⌧))iQ =
1

Q(r, t)

ˆ r(tf )=rf

r(t)=r
Dr(⌧)rV (r(⌧)) e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(16)

and the Gaussian noise is defined by eq.(3). Note that the first term in the r.h.s of equation (15) guarantees that
the constraint r(tf ) = rf is satisfied. It is the only term which is singular at time tf . In fact, in the case of a free
Brownian particle, the effective potential V vanishes, and we recover the standard equation for free Brownian bridges

ṙ =
rf � r(t)

tf � t
+ ⌘(t) (17)

The above equation (15) is the fundamental equation of this article and will be used to generate constrained paths.
This equation is a non linear stochastic equation. It is Markovian, in the sense that the r.h.s. of (15) depends only
on r(t). However, the presence of the average over all future paths makes it difficult to use.
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Continuous limit



• Dominant Paths: Saddle-Point expansion: 
Minimise action: Newton equation = 

Instanton   with B.C.  

• Low dimension: solve Schrödinger equation

··r = 2
γ2

∂V
∂r

xi, xf

D = kBT
γ

Path Integral = Feynman Path integral
          = Schroedinger equation



Transition path sampling

• Construct an initial trajectory with fixed end 
points  

• Deform the trajectory locally and accept or 
reject with a Monte Carlo algorithm

25

xi and xf

P (xf , tf |xi, 0) =
Z NY

k=1

dxk exp

 
� dt

4D

NX

k=1

✓
xk+1 � xk

dt
+

D

kBT

@U

@xk

◆2
!

Path integral representation



ri
rf

r1 r2
r3

rN

Initial trajectory from  to ri rf

• Deform the trajectory locally and accept or reject 
with a Monte Carlo algorithm

r3 + δr3

• Difficulties: 
• Huge sampling space 
• Depends very much on initial trajectory



Bridges (Doob)

• Consider paths starting at             and 
conditioned to end at  

• The conditional probability for such a path 
to be at           is given by

27

(x0, 0)
(xf , tf )

The goal of this paper is to show how one can generate a representative sample of transi-

tion paths, starting in state A at time 0 and ending in state B at some arbitrary time tf . In

mathematical terms, we are looking for the paths starting from A at time 0 and conditioned

to end in state B at time tf .

Using the path integral representation of eq.9, we see that the probability for a path

{x(t)} starting at x0 at time 0, to end at xf at tf is given by

P ({x(t)}) =
1

A
e−β(U(xf )−U(x0))/2 exp

�
− 1

4kBT

ˆ tf

0

dt

�
γẋ2 +

1

γ
V (x)

��
(10)

where

A =

ˆ
dxfe

−β(U(xf )−U(x0))/2

ˆ (xf ,tf )

(x0,0)

Dx(t) exp

�
− 1

4kBT

ˆ tf

0

dt

�
γẋ2 +

1

γ
V (x)

��
(11)

The conditional probability over all paths starting at x0 at time 0 and ending at xf at

time tf , to find the system at point x at an intermediate time t is given by

P(x, t) =
1

P (xf , tf |x0, 0)
Q(x, t)P (x, t)

where

P (x, t) = P (x, t|x0, 0)

Q(x, t) = P (xf , tf |x, t)

The equation satisfied by P is given in eq. 4, whereas the equation for Q is given by

∂Q

∂t
= −D

∂2Q

∂x2
+ Dβ

∂U

∂x

∂Q

∂x
(12)

It follows easily that the equation for the conditional probability P(x, t) is given by

∂P
∂t

= D
∂

∂x

�
∂P
∂x

+
∂

∂x
(βU − 2 ln Q)P

�

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,

one sees that it can be obtained from a Langevin equation with a modified potential

dx

dt
= − D

kBT

∂U

∂x
+ 2D

∂ ln Q

∂x
+ η(t) (13)

5

FP 
adjoint FP 

(x, t)
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P(x, t) = P (x, t|xf , tf \ x0, 0)and



(xi, 0)

(xf , tf )

(x, t)P (x, t)

Q(x, t)
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5

FP equation
adjoint FP equation



Fokker-Planck and adjoint

29

It is well known that the probability distribution P (x, t) for the particle to be at point x

at time t is given by a Fokker-Planck equation [10]

∂P

∂t
= D

∂

∂x

�
∂P

∂x
+ β

∂U

∂x
P

�
(4)

where β = 1/kBT is the inverse temperature. In this one dimensional model, the initial state

A is characterized by its position x0 at time 0 and the final state B by its position xf at time

tf . This equation is thus to be supplemented by a boundary condition P (x, 0) = δ(x− x0)

where x0 is the initial position of the particle.

It is convenient to go to the Schrödinger representation, by defining

Ψ(x, t) = eβU(x)/2P (x, t)

The function Ψ(x, t) satisfies the imaginary time Schrödinger equation

∂Ψ

∂t
=

kBT

γ

∂2Ψ

∂x2
− 1

4γkBT
V (x)Ψ(x) (5)

with

V (x) =

�
∂U

∂x

�2

− 2kBT
∂2U

∂x2
(6)

Using the standard notations of quantum mechanics, one can conveniently write

P (xf , tf |x0, 0) = e−β(U(xf )−U(x0))/2 < xf |e−tf H |x0 > (7)

where the Hamiltonian H is given by

H = −kBT

γ

∂2

∂x2
+

1

4γkBT
V (x) (8)

In eq.(7), we have denoted by P (xf , tf |x0, 0) the probability for a particle to start at x0 at

time 0 and end at xf at time tf , to emphasize the boundary conditions.

It is well-known that the ground state of H, which has 0 energy, is Ψ0(x) = e−βU(x)/2/
√

Z

where Z is the partition function of the system, and all eigenstates Ψα of H have strictly

positive energies Eα > 0. The spectral expansion of P can be written as

P (xf , tf |x0, 0) =
e−βU(x)

Z
+

�

α �=0

e−tf EαPα(xf , x0)

We see that for large tf the system converges to the Boltzmann distribution, and that its

relaxation time is given by the inverse of the first eigenvalue τR = 1/E1. In systems with

3

The goal of this paper is to show how one can generate a representative sample of tran-

sition paths, starting in state A at time 0 and ending in state B at some arbitrary time tf .

The typical times of interest are not the (long) folding times, but rather the (very short)

transition or barrier crossing times. In mathematical terms, we are looking for the paths

starting from A at time 0 and conditioned to end in state B at time tf << τK .

Using the path integral representation of eq.(9), we see that the probability for a path
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• Modified Langevin equation for conditioned 
paths 

• Equation is Markovian (but depends 
through Q on the whole future of the 
trajectories!) 

• No bias in the statistics of the trajectories 
• Could be obtained from Girsanov theorem 
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The goal of this paper is to show how one can generate a representative sample of transi-

tion paths, starting in state A at time 0 and ending in state B at some arbitrary time tf . In
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• Example: Brownian bridges 

• Conditioned Langevin equation becomes

31

U(x) = 0

P (xf , tf |x, t) =

s
1

4⇡D(tf � t)
e
�

(xf�x)2

4D(tf�t)

dx

dt
=

xf � x

tf � t
+ ⌘(t)

Q(x, t) =

dX

dt
=

xf �X

tf � t
average is linear 
          in time



Free Langevin
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• Example: Brownian meanders = Brownian 
walks constrained to stay with x>0 during 
fixed time. Use mirror image

• Integrate for 

ẋ = 2D
@ logQ(x, t)
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xf > 0

method of images. In the case when the end point is fixed at xf at time tf we obtain
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If the end point xf at tf can be anywhere in the 1/2 plane xf > 0, the Green’s function

above has to be further integrated for xf 2 [0,+1] to obtain
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ˆ 1

0

dxf Q(x, t)

= Erf(
xp
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) (19)

and the corresponding Langevin equation for the meander reads
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The case of a Brownian excursion, where the extremity xf is fixed, is generated by the

Langevin equation
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Taking xf ! 0, one obtains the effective Langevin equation for an excursion

dx

dt
=

2D

x

✓
1� x

2

2D(tf � t)

◆
+ ⌘(t) (22)

Again, these two equations (20) and (22) can be solved easily by discretizing time. We

show in Fig.(5) a set of 500 statistically independent meanders starting at x0 = 5 at time 0

and ending anywhere in the upper half plane at time tf = 1. Similarly, we show in Fig.(6)

a set of 500 statistically independent excursions starting at x0 = 0.01 at time 0 and ending

at xf = 0 at time tf = 1. In all cases, the independent trajectories are obtained for different

noise histories and time step dt = 0.001.

V. THE HARMONIC OSCILLATOR: THE ORNSTEIN-UHLENBECK PROCESS

Another solvable case is that of the harmonic oscillator U(x) = Kx
2
/2. The uncondi-

tioned Langevin equation is
dx

dt
= �D�Kx+ ⌘(t) (23)
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• Example: Brownian excursions: Brownian 
walks x>0, starting around x=0 and ending 
at x=0.

• Take the limit 
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If the end point xf at tf can be anywhere in the 1/2 plane xf > 0, the Green’s function
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Again, these two equations (20) and (22) can be solved easily by discretizing time. We

show in Fig.(5) a set of 500 statistically independent meanders starting at x0 = 5 at time 0

and ending anywhere in the upper half plane at time tf = 1. Similarly, we show in Fig.(6)

a set of 500 statistically independent excursions starting at x0 = 0.01 at time 0 and ending

at xf = 0 at time tf = 1. In all cases, the independent trajectories are obtained for different

noise histories and time step dt = 0.001.

V. THE HARMONIC OSCILLATOR: THE ORNSTEIN-UHLENBECK PROCESS

Another solvable case is that of the harmonic oscillator U(x) = Kx
2
/2. The uncondi-

tioned Langevin equation is
dx

dt
= �D�Kx+ ⌘(t) (23)
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Example: Brownian excursions above a line
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• Example: the Harmonic oscillator (Ornstein-
Uhlenbeck process) 

•                    

•                      

• Bridge equation 

• Note that this equation does not depend on 
the sign of K: same conditioned trajectories 

·x = − 1
γ

Kx + η(t)

38

U(x) =
1
2
Kx2

dx

dt
=

K

�

xf � x cosh K
� (tf � t)

sinh K
� (tf � t)

+ ⌘(t)
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Knotting-Unknotting of DNA,
Vortices, Defect Lines, etc…

(with C. Micheletti, SISSA, Italy)

• Many knots in DNA

• Topoisomerase I and II can unknot DNA by 
passing two DNA strands through each 
other (cut and reconnect)



• How do knots transform in DNA?

• Mathematicians use a topological approach: 
what are the minimum sets of moves to go 
from one knotted structure to another

• This approach ignores the dynamics

• We propose an approach based on bridges



Consider a 1/2 flexible Gaussian chain
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3

2a2

Z N

0
ds

✓
dr

ds

◆2

+
K

2

Z N

0
ds

✓
d
2
r

ds2

◆2

�
Z N

0
F (s)r(s)
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Assume you know the chain configuration          at time 0
and the final chain configuration           at time

r0(s)
rf (s) tf

The Langevin Bridge equation is

with

Q = P (rf (s), tf |r0(s), 0)

Everything can be solved exactly in Fourier space
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@4r
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◆
+ 2D

@ logQ

@r(s, t)
� �F (s) + ⌘(s, t)
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where

Solve numerically in Fourier space, then 
go back to real space
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(14)
Similarly to the case without circular permutation, these
equations are easily solved by discretization. The numer-
ical complexity is increased due to the summation over
circular permutations in eq.(12).

Results. The Langevin bridging scheme was used to
connect various pairs of ring polymer conformations with
N bonds and tied in di↵erent knot types. These ini-
tial and final structures were picked from an equilibrated
distribution (generated with a Monte Carlo scheme) of
chains of N = 240 cylinders with given bending rigidity
XXXgive parametersXXX. Notice that these starting and
ending states are generated by taking explicitly into ac-
count their excluded volume interactions. These are then
switched o↵ during the dynamics to allow for topology-
unrestricted interconversions similar to those observed
knotted for defect lines in liquid crystals or vortex lines
in fluids.

We first discuss the transition from an unknotted con-
formation to a knotted one, and specifically to a 51 knot.
This topology belongs to the family of torus knots, which
are drawable without self-intersections on the surface of
a torus. We chose it as a first example, because it is the
simplest knot type with unknotting number equal to 2.
This means that, even in the most favorable conditions,
the transition from the trivial to the 51 topology cannot
occur via a single strand passage, but at least two are
needed. This ought to yield interesting knotting path-
ways.

An overview of the typical transition pathway between
these two conformations is given in Fig. 1, where the
initial unknotted and final 51-knotted conformations are
represented along with intermediate snapshots.

The pathway progresses steadily between these states.
This is clarified by the time evolution of the root-mean-

FIG. 1: Transition pathway between an unknotted ring and a
51 knotted ring. The RMSD to the initial and final structures
at various stages of the trajectory are shown in panel (a).
Instantaneous configurations at selected times are higlighted.
The average crossing number and writhe are shown in panel
(b). The overlayed colored background indicates the non-
trivial topological states, see legend.

square distance (RMSD) from the start and end con-
formations, which progresses steadily and without lag
phases, see panel (a). Panel (b), instead, profiles other
topology-related metric properties, such as the average
crossing number and the average writhe. We recall that
both quantities are obtained by considering several (1000
in our case) two-dimensional projections of the oriented
conformation and averaging over them a weighted sum
of the projected crossings. For the crossing number each
crossing carries the same +1 weight, while for the writhe
the weight is either +1 or �1 depending on the hand-
edness (right-hand rule) of the pair of crossings strands. ref

The time evolution of the two quantities is noisier than
the RMSD profile but still bridges the end states with an
overall steady progression.
These properties clarify a posteriori that the imposed

duration of the transition pathway is adequate: it is not
so long that the conformations di↵uses randomly away
from the initial state before pointing towards the final
state, and yet it is not so short that stochastic fluctua-
tions are suppressed.
The associated discontinuous evolution of the topolog-

ical, knotted state is shown in panel (c). For most of
the gradual evolution, the conformation is locked in the
unknotted state and becomes non trivial only in the last
⇠ 20% of the trajectory. In this latter part, the 51 state is

4

FIG. 2: Transition pathway between an unknotted ring and
a 41 knotted ring. The shown observables are the same as in
Fig. 2.

reached via a di↵erent, intermediate topology, consistent
with previous considerations on the unknotting number.
In this specific trajectory, the mediating topology is the
simplest non-trivial topology, the 31 or trefoil knot, which
has unknotting number equal to 1.

We point out that, because the initial and final states
are assigned, the generated trajectories are statistically
time-reversible. By this it is meant that the time-reversed
trajectory connecting the final state to the initial one has
the same statistical weight that the forward pathway.Mettere

altrove?

In this first example, the assigned topologies are
bridged in the most direct way. In fact, the 01 ! 31 ! 51
succession takes through states with steadily increas-
ing minimal crossing number, unknotting number, and
writhe.will need to say

somewhere that
the 31 chirality
matches the 51

one.

However, this is not always the case, as it is aptly il-
lustrated by the trajectories in Fig. 2. One observes that
the pathway connecting the 01 and 41 states switches
repeatedly between unknotted and 31 topologies before
reaching the the target figure-of-eight knot. The inter-
mittent occupation of trefoil knots is a robust feature of
01 $ 41 routes. It is, in fact, observed for various di↵er-
ent choices of equilibrated intial and final states with 01
and 41 topologies, respectively.

The observed properties of this prototypical intercon-
version illustrate well the insight that can be gained from
Langevin bridging schemes, and that is not otherwise
obtainable by alternative means, such as free dynami-
cal evolution of the initial state or from the transition
matrix between knot types [30]. In fact, the former ap-

FIG. 3: Transition pathway between two 52 knotted ring. The
shown observables are the same as in Fig. 3.

proach would be ine↵ective to reach the target topology
unless it is highly represented in the canonical ensemble.
A fortiori the chance that the specific target geometry
is reached would practically be always negligible. Mas-
ter equation approaches based on the pairwise transition
rates between any two given topologies (e.g. obtained
by distretizing a large number of free stochastic evolu-
tions) would be of limited use too. Such matrices would,
for instance correctly capture that the unknot can be di-
rectly interconverted to topologies with unknotting num-
ber equal to 1 (31, 41, 52, 61 etc.), but the sequence of
topologies, and their lifetimes, connecting 01 to 41 states
has no bearings on the actual pathways bridging any
two initial and final states with these topologies. The
transition matrix approach, therefore, can elegantly re-
capitulate the equilibrium knotting statistics in terms of
Markovian transition between topologies, but cannot give
insight on the interplay of geometry and topology in vi-
able canonical pathways connecting actual states. This is
were the competitive advantage of the propose Langevin
bridging scheme lies.

From this standpoint, particularly interesting are the
transitions between equilibrated rings with di↵erent con-
formations but same topology. From such pathways one
can understand whether such iso-topological conforma-
tions are usually connected by pathways that maintain
the same knotted state at all times. Our of XXX trajecto-
ries using knots with up to 5 crossings for both end states,
indicates that the conformational space explored by the
bridging trajectories is typically not contained within a
single topological ensemble.

0 ! 51
0 ! 31 ! 51

52 ! 52
52 ! 31 ! 0 ! 31 ! 52 ! 74 ! 52
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3. Results and Discussion

We used the Langevin bridging scheme to connect various pairs of ring polymer conformations
tied in different knot types. The initial and final structures were picked from an equilibrated
distribution (generated with a Monte Carlo scheme) of self-avoiding semi-flexible rings. These were
modelled as a succession of N = 240 cylinders with diameter s = b/4, where b is the length of the
cylinder axis, and nominal Kuhn length equal to 10b. For integrating the dynamics, and presenting the
results, we took b as the unit of length, and D

2/b as the unit of time. In these units, the dynamics was
integrated with a time step equal to 10�4 and for a total timespan equal to 2.

The excluded volume interactions between the cylinders were then switched off during the
Langevin bridging dynamics to allow for topology-unrestricted interconversions. By doing so we
model the interconversions observed for defect lines in liquid crystals or vortex lines in fluids in the
simplest possible manner. In the mentioned systems, in fact, self-crossings events have an energy
cost or are subject to local conservation laws. In this first study, we neglect such interactions to
keep the model amenable to extensive theoretical treatment and hence clarify the physically-viable
reconnections routes in the simplest and most general setup.

We first discuss the transition from an unknotted conformation to a knotted one, and specifically
to a left-handed 51 knot. This topology belongs to the family of torus knots, which are drawable
without self-intersections on the surface of a torus [39]. We chose it as a first example, because it is the
simplest knot type with unknotting number equal to 2. This means that, even in the most favorable
conditions, the transition from the trivial to the 51 topology cannot occur via a single strand passage,
but at least two are needed. This ought to yield interesting knotting pathways.

An overview of the typical transition pathway between these two conformations is given in
Figure 1, where the initial unknotted and final 51-knotted conformations are represented along with
intermediate snapshots.

RMSD to 
final state RMSD to

initial state

<nc>

<Wr>

31 5101

time index [103]

(a)	

(b)	

Figure 1. Transition pathway between an unknotted ring and a left-handed 51 knotted ring. The
root-mean-square distance (RMSD) to the initial and final structures at various stages of the trajectory
are shown in panel (a). Instantaneous configurations at selected times are highlighted. The average
crossing number and writhe are shown in panel (b). The overlayed colored background indicates the
non-trivial topological states, see legend.
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The pathway progresses steadily between these states. This is clarified by the time evolution
of the root-mean-square distance (RMSD) from the start and end conformations, which progresses
steadily and without lag phases, see panel (a). Panel (b), instead, profiles other topology-related metric
properties, such as the average crossing number, hnci, and the average writhe, hWri. We recall that
both quantities are obtained by considering several (1000 in our case) two-dimensional projections of
the oriented conformation and averaging over them a weighted sum of the projected crossings. For the
crossing number each crossing carries the same +1 weight, while for the writhe the weight is either +1
or �1 depending on the handedness (right-hand rule) of the pair of crossings strands [39]. The time
evolution of the two quantities is noticeably noisier than the RMSD profile and its overall trend does
not show a steady progression from initial to final state. The negative values of hWri in the final stages
of the trajectories are consistent with the left-handedness of the target 51 knot.

These properties clarify a posteriori that the imposed duration of the transition pathway is
adequate: it is not so long that the conformations diffuses randomly away from the initial state before
pointing towards the final state, and yet it is not so short that stochastic fluctuations are suppressed.

The associated discontinuous evolution of the topological, knotted state is highlighted by overlaid
colored bands in Figure 1. For most of the evolution, the conformation is locked in the unknotted state
and becomes non trivial only in the last ⇠20% of the trajectory. In this latter part, the 51 state is reached
via a different, intermediate topology, namely a 31 knot. This is consistent with previous considerations
on the unknotting number because the 31 or trefoil knot has unknotting number equal to 1 and, being
the simplest knot type, can optimally bridge between the 01 and 51 end states. In more general terms,
knot transitions can occur only within pairs of knots at strand passage distance equal to 1 [40].

This clear and intuitive progression of topological complexity is not always observed. For instance,
in Figure 2 one notes that the pathway connecting the shown 01 and 41 states switches repeatedly
between unknotted and 31 topologies before reaching the the target figure-of-eight one. The intermittent
occupation of trefoil knots is a robust feature of 01 $ 41 routes. In fact, though direct 01 $ 41 are
clearly possible [40,41] the mediation through 31 knots is observed in 10 out of 32 trajectories connecting
various combinations of equilibrated initial and final states with 01 and 41 topologies.

41

RMSD to 
final state

RMSD to
initial state

<nc>

<Wr>

3101

time index [103]

(a)	

(b)	

Figure 2. Transition pathway between an unknotted ring and a 41 knotted ring. The shown observables
are the same as in Figure 1.
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The observed properties of this prototypical interconversion illustrate well the insight that can be
gained from Langevin bridging schemes and that would not be obtainable by alternative means.

For instance, allowing the system to evolve freely from the initial state would be ineffective to
reach the target topology unless it is highly represented in the canonical ensemble. A fortiori the chance
that the specific target geometry is reached would practically be always negligible.

Master equation approaches based on transition rates between knot types (observed in a large
number of free stochastic evolutions [41]) would be inapplicable too. Transition matrices can correctly
capture that the unknot can be directly interconverted to topologies with unknotting number equal to
1 (31, 41, 52, 61, etc.), but the predicted Markov succession of discrete topologies, and their lifetimes,
connecting 01 to 41 states would have no bearings on the actual conformational evolution of ring
polymers. The transition matrix approach, therefore, can elegantly recapitulate the equilibrium
knotting statistics in terms of Markovian transition between topologies, giving valuable insight into
the interplay of geometry and topology. However, generating viable canonical pathways connecting
actual states would be beyond its scope. This is were the specificity of the proposed Langevin bridging
scheme lies.

From this standpoint, particularly interesting are the transitions between equilibrated rings
with different conformations but same topology. From such pathways one can understand whether
iso-topological transitions occur via pathways that maintain the same knotted state at all times. Our
analysis of 270 trajectories using the same knot type (of up to 5 crossings) for both end states, indicates
that the trajectories are not constrained within a single topology.

Figure 3 shows one such trajectory with end states tied in a 52 knot (same chirality). The bridging
pathway clearly populates knots that are simpler (31) and more complex (74) than the initial and final
topologies. The presence of 74 knots on the route is particularly noteworthy because—unlike the 52
one—it has unknotting number equal to 2. This means that the system evolves through states that
are definitely more entangled than the initial one and these, in turn, are further simplified before the
target state can be reached. This larger-than-expected intermediate complexity is frequent. In our set
of 270 trajectories with end states having the same topology of up to 5 crossings, we observed that 6%
of the canonical trajectories went through states with 6 or more crossings. The most recurrent type of
such knots were 61, 62 and the aforementioned 74.

52 74

RMSD to 
final state

RMSD to
initial state

<nc>

<Wr>

3101

(a)	

(b)	
time index [103]

Figure 3. Transition pathway between two 52 knotted ring. The shown observables are the same as
in Figure 1.



For low-dimensional system, it is possible to compute the 
function Q by computing the eigenvectors and eigenvalues 
of the Fokker-Planck operator and using its spectral 
decomposition. The exact bridge equation becomes

VI. THE GENERAL CASE

There are very few cases which are analytically solvable and we thus now discuss the

generic non-solvable case. In order to compute the central quantity M(x, t), we perform a

spectral expansion [15]

M(x, t) = hxf |e�(tf�t)H |xi

=
X

↵

e
�E↵(tf�t) ↵(xf ) ↵(x) (26)

where  ↵ is the eigenstate of H with eigenvalue E↵

H ↵(x) = E↵ (x)

The bridge equation (17) becomes

dx

dt
= 2D

P
↵
e
�E↵(tf�t) ↵(xf )

@ ↵(x)
@xP

↵
e�E↵(tf�t) ↵(xf ) ↵(x)

+ ⌘(t) (27)

where we have used D = kBT/�.

In order to be able to solve this equation numerically (by discretization for instance),

one has to compute the eigenstates  ↵ and eigenvalues E↵ of the Hamiltonian H. In the

case of low-dimensional system, this can be done very easily by diagonalizing the discretized

Hamiltonian H which turns out to be a tridiagonal operator.

VII. THE QUARTIC DOUBLE-WELL

We illustrate the above method on the example of barrier crossing in 1d (quartic poten-

tial).

U(x) =
1

4
(x2 � 1)2

This potential has two minima at x = ±1, separated by a barrier of height 1/4. Note

that V (x) = (�U 0
/2)2 � �U

00
/2 is much steeper than U(x) and thus more confining around

its minima. At low temperature, the potential V (x) has two minima at points close to ±1

and one minimum at x = 0.

The ground state of the Hamiltonian is  0(x) ⇠ exp(��U(x)/2. The Hamiltonian is

diagonalized by discretizing space and writing it in the form of a tridiagonal matrix. The

14

Q(x, t) = P (xf , tf |x, t)

= e��(U(xf )�U(x))/2hxf |e�H(tf�t)|xi

= e��(U(xf )�U(x))/2
X

↵

e�E↵(tf�t) ↵(xf ) ↵(x)



• For large number of degrees of freedom, we 
don’t know how to calculate the function 
Q(x,t). We need to make approximations. 

• Some important requirements: 
– Q(x,t)>0 
– Detailed balance:                                             

and we should have 
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Q(x, t) = P (xf , tf |x, t)

P (xf , tf |x, t)
P (x, tf |xf , t)

= e�
U(xf )�U(x)

kBT



Transition Path Time Distribution 

Kramers Time
Transition Path Time

Harmonic oscillations

Double Well Potential



Short transition path time 
approximation

• In the Kramers picture, there are 2 time 
scales: 
– Kramers time, or waiting time, or folding time 

– Transition path time (A. Szabo), Instantons 

– We have 
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⌧K ⇡ e
�E

kBT

⌧TP ⇡ log
�E

kBT

⌧TP << ⌧K

1ms-1s

< 1  sµ
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FIG. 1. The complex motion of a system is often mapped onto the motion of a
single reaction coordinate. Two-state systems are then imagined as the move-
ment of this reaction coordinate in a one-dimensional free energy landscape,
with two minima separated by an energy barrier E. To calculate the transi-
tion path time distribution, the top of the barrier is modeled as a parabolic
barrier.

characteristic time for the particle to jump from one well to the
other in a double well potential V (x) as that shown in Fig. 1.
This is obtained from the solution of Eq. (1) or of the associated
Fokker-Planck equation. One has1

⌧a!b = 2⇡

r
K

Ka

2m e
�EK

p
�2 + 4Km � �

, (3)

where EK is the barrier height and � = 1/kBT. Kramers’ time
depends also on the curvature of the potential energy V (x) at
the bottom (Ka) and at the top (K) of the barrier, obtained from
the expansions V (x) ⇡ Ka(x � xa)2/2 and V (x) ⇡ Kx

2/2. The
overdamped regime can be obtained by letting m ! 0 in (3),
which yields

lim
m!0
⌧a!b =

2⇡�p
KaK

e
�EK ⌘ ⌧(o)

a!b
. (4)

A characteristic feature of Kramers’ time is the exponential
dependence on the barrier height. We also note that ⌧ > ⌧(o),
i.e., for a fixed value of the friction coefficient �, inertia has
the effect of slowing down the dynamics. In the rest of the
paper, we will discuss and compare two regimes: the first
regime comprises the range of m and � values for which Eq.
(3) is valid. We will refer to this as the inertial regime. In
the literature of stochastic barrier crossing phenomena, this
is also referred to as the moderate to high friction regime.1

The second regime is the overdamped regime obtained from
the previous one by taking a vanishing mass or equivalently
a very large value of the friction coefficient. A third regime
which has been studied in the literature, the energy diffusion
regime, will not be considered here. In the energy diffusion
limit, also known as underdamped limit, Eq. (1) ceases to
be valid and it is replaced by a diffusion equation for the
energy.1

III. TRANSITION PATH TIME DISTRIBUTIONS

In this section, we present the general framework for the
calculation of pTP(t), the probability distribution that a transi-
tion path has a duration t. To define such paths, one needs to
fix the values of the reaction coordinates at the two sides of the
barrier, as illustrated in Fig. 1. There is some freedom in the

choice of the original and final points of transition paths, and
the TPT distribution might depend on it. For convenience, we
place the maximum at x = 0 and we consider paths from x0
< 0 to x0 > 0. Transition paths are trajectories connecting the
initial to the final point without entering the regions x < x0
and x > x0.

The key quantity is the propagator P(x, v , t |x0, v0, 0),
which is the probability that a particle with initial position
and velocity, x0 and v0, is at x and has velocity v at a later
time t > 0. The calculation of TPT distributions requires thus
absorbing boundary conditions at x0 and x0. Consider a path
originating at a point x

0 < x0 and with velocity v 0; an absorb-
ing boundary at x > x0 corresponds to imposing the following
condition:23,24

P(x0, v , t |x0, v 0, 0) = 0 for v < 0, (5)

which implies a vanishing current of particles leaving the wall
toward the domain. Note that this is more subtle than the
overdamped case for which more simply P(x0, t |x0, 0) = 0.
Condition (5) is more complicated to implement mathemati-
cally. No exact solution exists even for the simplest case of free
diffusion with an absorbing boundary (5), and a set of approx-
imation schemes has been devised.24 However, for sufficiently
steep barriers, we expect that the solution with free boundary
conditions is a good approximation to the absorbing boundary
case.13,21 The approximation will be checked by comparing
analytical results with numerical simulations.

In this work, we will consider the initial velocity to be
thermalized. This can be accounted for by integrating P over
all possible initial velocities. In addition, as a transition path
with free boundaries is defined by the fact that the particle
crosses the x0 boundary with any velocity, its final velocity
has to be integrated over. We thus define

P(x, t |�x0, 0) ⌘
1⌅

�1

dv

1⌅

�1

dv0 peq(v0)P(x, v , t |�x0, v0, 0), (6)

where

peq(v) =
r

m

2⇡kBT
e

�
mv2

2kBT (7)

is the Maxwell velocity distribution for a system in equilibrium
at temperature T, as we have assumed that the particles spend
sufficiently long times in a given well, so that their positions
and velocities follow an equilibrium distribution.

To connect the probability of finding the particle at posi-
tion x at a time t to the TPT distribution, we introduce the
absorption function QA obtained by integrating the function
P(x, t| x0, 0) obtained from Eq. (6) in the domain x > x0,

QA(t) ⌘
1⌅

x0

dx P(x, t | � x0, 0), (8)

which counts all trajectories, originating in x0 that have
already crossed the boundary x0 at time t. Obviously, all these
trajectories have a transition path time smaller than t, and thus
QA(t) is proportional to the probability that the TPT is smaller
than t.

The difference QA(t + �t) QA(t) is thus equal to
the fraction of trajectories that cross the boundary x0 in the

Absorption Probability

Equation is linear: 
can be solved

dx
dt

= 1
γ

F(x) + η(t)

F(x) = − ∂U
∂x

= − Kx

pTP(t) =
dQA

dt

The solution is a linear combination of Gaussians, so it is a Gaussian variable

x(t) = x0e−Ωt + ∫
t

0
dτe−Ω(t−τ)η(τ)

Ω = KβD



This equation neglects paths which return to the left side.
Very good approximation for high barrier
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interval [t, t + �t]; hence the TPT distribution can be approx-
imated as

pTP(t) ⇡ C
dQA(t)

dt
, (9)

where C is a normalization constant. This expression is approx-
imate as we are not imposing the appropriate absorbing bound-
ary conditions. When using free boundary conditions, the
left-hand side of Eq. (9) counts also paths with multiple cross-
ings at x0 and x0, which, strictly speaking, are not transition
paths. However, in the high barrier limit, these paths become
exceedingly rare and QA is a good approximation to the absorb-
ing boundary case. Finally, the normalization constant can be
obtained from
⌅ +1

0
pTP(t)dt = C [QA(+1) � QA(0)] = CQA(+1) = 1,

(10)

where we have used QA(0) = 0, from Eq. (8).

IV. TPT DISTRIBUTION FOR PARABOLIC BARRIER

We consider here a parabolic barrier centered in x = 0,
which corresponds to a repulsive linear force,

F(x) = Kx. (11)

For this system, the Langevin equation (1) is linear and can thus
be solved. Denoting the solution by x(t), the full propagator
can be written as

P(x, v , t |x0, v0, 0) = h�(x � x(t))�(v � ẋ(t))i. (12)

As we saw in Sec. III, the quantity of interest in Eq. (6) is

P(x, t |x0, 0) =

1⌅

�1

dv dv0 peq(v0)h�(x � x(t))�(v � ẋ(t))i. (13)

The integration over the velocity v is trivial (see details in
Appendix A), and we find

P(x, t |x0, 0) =

1⌅

�1

dv0 peq(v0)
1

p
2⇡�2(t)

exp
 
� (x � Xv0 (t))2

2�2(t)

!
.

(14)
Here Xv0 (t) is the solution of the deterministic equation of
motion for a particle originating in x0 and with initial velocity
v0 [see (A6)]. The variance �2(t), given in Eq. (A7), does not
depend on the initial conditions x0 and v0. It vanishes at short
times, while it diverges exponentially at large times.

The next step is the integration in the initial velocities.
Since v0 enters linearly in Xv0 and peq(v0) is Gaussian, Eq.
(6) boils down to a Gaussian integral which can be easily
performed (for details see Appendix A). The result is

P(x, t |x0, 0) =
1

p
2⇡�2(t)

exp
 
� (x � X0(t))2

2�2(t)

!
, (15)

where X0(t) is the deterministic solution of the equation of
motion for a particle with vanishing initial velocity v0 = 0.

The resulting distribution (15) is again Gaussian but with
�2(t) = �2(t) +  2

v (t), i.e., the variance, is larger than that
of the distribution (14). Here  2

v (t) indicates the contribution
obtained from integrating over the initial velocities [see Eq.
(A13)].

The final step is the calculation of QA, for which we get
(details in Appendix A)

QA(t) =
1
2

(1 � Erf(G(t))) , (16)

where the error function is defined as

Erf(x) ⌘ 2p
⇡

x⌅

0

du e
�u

2
(17)

and

G(t) ⌘ x0 � X0(t)
p

2�2(t)
. (18)

The full expressions for X0(t) and �(t) are given in
Appendix A, Eqs. (A10) and (A12). Using Eqs. (9) and (10)
and the calculation of the normalization constant given in
(A18), we arrive at the following expression for the TPT
distribution:

pTP(t) = � 2p
⇡

G
0(t)e�G

2(t)

1 � Erf(
p
�E)

, (19)

where G
0 ⌘ dG/dt is the time derivative of G(t), � = 1/kBT,

and E = Kx
2
0/2 is the barrier height.

The solid line in Fig. 2 shows a plot of the TPT distribution
as given by Eq. (19). This distribution vanishes at short times,
with a leading singular behavior due to the divergence of G(t)
in the limit t ! 0. From Eqs. (A10) and (A12), one finds at
short times

pTP(t) ⇠
t!0

e
�G

2(t) = exp *,�
2�mx

2
0

t2
+
- . (20)

FIG. 2. Transition path time distribution as obtained from Eq. (19) for a parti-
cle with inertia (m > 0) (solid line) and for the overdamped limit (dashed line)
obtained by setting m = 0 while keeping � fixed. The characteristic behavior
at short and long times is summarized in Table I. The parameters used are, in
dimensionless units, x0 = 10, K = 0.1,� = 1, m = 1, and kBT = 1 correspond-
ing to �E = 5. Inset: the same data in semi-logarithmic scales to emphasize
the exponential decay of the distribution at long times.
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TABLE I. Summary of the asymptotic forms of G(t) and G
0(t) determining

the behavior of the TPT distribution (19) at short and long times. Both the iner-
tial and overdamped regimes are given. (Note: short and long times correspond
to the limits ⌦t ⌧ 1, |�±t| ⌧ 1 and ⌦t � 1, |�±t| � 1, respectively.)

Rates Short times Long times

Inertial
�± ⌘

�� ±
p
�

2m
G

2(t) ⇠
2�mx

2
0

t2
G
0(t) ⇠ �p�E

� = �2 + 4Km ⇥ 2
p
�

� +
p
�
�+e
��+t

Overdamped ⌦ ⌘ K

�
G

2(t) ⇠
��x

2
0

t
G
0(t) ⇠ �p�E⌦e

�⌦t

This result can be understood from the ballistic motion
of particles starting from x0. At short times, the effect of
the parabolic potential can be neglected and particles follow
a free motion x(t) ⇡ x0 + vt. The variance is then given
by

�2(t) = h(x(t) + x0)2i ⇡ hv2it2 =
kBT

m
t
2, (21)

where we have used the equipartition theorem mhv2i = kBT.
Plugging in this result in Eq. (18) and recalling that X0(t)
⇡ x0 at short times [Eq. (A10)], we obtain

G
2(t) =

(x0 � X0(t))2

2�2(t)
⇠

t!0

2x
2
0

�2(t)
=

2mx
2
0

kBT
t
�2, (22)

which explains the result of Eq. (20).
At long times, G(t) converges to a finite constant since

both the numerator and denominator in Eq. (18) diverge at
the same rate. The calculation gives G

2(t)! �E [Eq. (A23)].
However the derivative G

0(t) vanishes exponentially at large t

[Eq. (A24)] as

G
0(t) ⇠

t!1
e
��+t (23)

with

�+ =
�� +

p
�2 + 4Km

2m
, (24)

a characteristic rate of the process. The limiting behaviors of
G

2(t) and G
0(t) are summarized in Table I.

A. The overdamped regime

The overdamped limit is discussed in Appendix A 4.
In this case, the function G(t) has a particularly simple
expression,

G
2(t) = �E

1 + exp(�⌦t)
1 � exp(�⌦t)

, (25)

where ⌦ ⌘ K /� defines the characteristic rate of the over-
damped system. This distribution was derived in Ref. 13. The
short time behavior is

G
2(t) ⇡ 2�E

⌦t
=
��x2

0

t
, (26)

as expected from the diffusive behavior of the particles,
we have at short times 2�2 ⇡ 4Dt, while the numerator

(x0�X0(t))2 ⇡ 4x
2
0. Using the Einstein relation D = kBT /�, we

recover Eq. (26). At long times, G
2(t)! �E and

G
0(t) ⇡ �

p
�E⌦e

�⌦t . (27)

B. Comparing the overdamped and inertial cases

Figure 2 shows a comparison of the inertial TPT distribu-
tion (solid line) with the overdamped one, obtained by setting
the mass term to zero (dashed line). Note that the values of the
parameters chosen, given in the figure caption, correspond �+
= 0.092 while⌦ = 0.1. Hence the differences between the two
cases are expected to be rather small, as shown indeed in Fig. 2.
The overdamped limit m! 0 leads to a shift of the distribution
to shorter time scales compared to the inertial case. Therefore
inertia globally slows down the transition path dynamics in
analogy to the slowing down of Kramers’ times discussed ear-
lier [Eqs. (3) and (4)]. Note that at short time scales there is
an opposite behavior with more frequent fast crossing events
in the inertial regime [Eq. (20)] compared to the overdamped
regime [Eq. (26) implies pTP(t) ⇠ exp(���x2

0/t)]. This behav-
ior however involves a negligible fraction of transition paths as
shown in Fig. 2 (a second crossing between dashed and solid
lines takes place at short time scales; this is expected at times
1/|� | ⇡ 0.92).

V. THE AVERAGE TPT

The average value of the TPT is given by

htTPi =
⌅ +1

0
dt t pTP(t) =

s +1p
�E

t(G) e
�G

2
dG

s +1p
�E

e�G2
dG

, (28)

where we have rewritten the integral using a change of vari-
able G

0
dt = dG. From the analysis of Sec. IV, we have seen

that G(t) is a monotonic decreasing function of t and
p
�E

 G  +1.
We now present the results for the behavior of the average

TPT for large barriers. This asymptotic behavior is dominated
by the behavior of t(G) close to the lower bound G &

p
�E,

where both inertial and overdamped TPT distributions decay
exponentially (see Table I). The details of the calculations can
be found in Appendix B.

In the overdamped regime, Eq. (25) can be inverted easily
to yield t as a function of G, and we obtain asymptotically for
large barrier �E � 1

htTPi ⇡
�

K
log(2e

C �E), (29)

where C ⇡ 0.577 215 is the Euler-Mascheroni constant. This
result coincides with that previously obtained by Szabo.25,26

In the inertial case, Eq. (18) cannot be inverted to yield
t as a function of G. However, using the asymptotic form of
G, we show in Appendix B that the large barrier limit of the
average TPT is given by

htTPi ⇡
1
�+

(log �E + A) , (30)

pTP(t) =
dQA

dt
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TABLE I. Summary of the asymptotic forms of G(t) and G
0(t) determining

the behavior of the TPT distribution (19) at short and long times. Both the iner-
tial and overdamped regimes are given. (Note: short and long times correspond
to the limits ⌦t ⌧ 1, |�±t| ⌧ 1 and ⌦t � 1, |�±t| � 1, respectively.)

Rates Short times Long times

Inertial
�± ⌘

�� ±
p
�

2m
G

2(t) ⇠
2�mx

2
0

t2
G
0(t) ⇠ �p�E

� = �2 + 4Km ⇥ 2
p
�

� +
p
�
�+e
��+t

Overdamped ⌦ ⌘ K

�
G

2(t) ⇠
��x

2
0

t
G
0(t) ⇠ �p�E⌦e

�⌦t

This result can be understood from the ballistic motion
of particles starting from x0. At short times, the effect of
the parabolic potential can be neglected and particles follow
a free motion x(t) ⇡ x0 + vt. The variance is then given
by

�2(t) = h(x(t) + x0)2i ⇡ hv2it2 =
kBT

m
t
2, (21)

where we have used the equipartition theorem mhv2i = kBT.
Plugging in this result in Eq. (18) and recalling that X0(t)
⇡ x0 at short times [Eq. (A10)], we obtain

G
2(t) =

(x0 � X0(t))2

2�2(t)
⇠

t!0

2x
2
0

�2(t)
=

2mx
2
0

kBT
t
�2, (22)

which explains the result of Eq. (20).
At long times, G(t) converges to a finite constant since

both the numerator and denominator in Eq. (18) diverge at
the same rate. The calculation gives G

2(t)! �E [Eq. (A23)].
However the derivative G

0(t) vanishes exponentially at large t

[Eq. (A24)] as

G
0(t) ⇠

t!1
e
��+t (23)

with

�+ =
�� +

p
�2 + 4Km

2m
, (24)

a characteristic rate of the process. The limiting behaviors of
G

2(t) and G
0(t) are summarized in Table I.

A. The overdamped regime

The overdamped limit is discussed in Appendix A 4.
In this case, the function G(t) has a particularly simple
expression,

G
2(t) = �E

1 + exp(�⌦t)
1 � exp(�⌦t)

, (25)

where ⌦ ⌘ K /� defines the characteristic rate of the over-
damped system. This distribution was derived in Ref. 13. The
short time behavior is

G
2(t) ⇡ 2�E

⌦t
=
��x2

0

t
, (26)

as expected from the diffusive behavior of the particles,
we have at short times 2�2 ⇡ 4Dt, while the numerator

(x0�X0(t))2 ⇡ 4x
2
0. Using the Einstein relation D = kBT /�, we

recover Eq. (26). At long times, G
2(t)! �E and

G
0(t) ⇡ �

p
�E⌦e

�⌦t . (27)

B. Comparing the overdamped and inertial cases

Figure 2 shows a comparison of the inertial TPT distribu-
tion (solid line) with the overdamped one, obtained by setting
the mass term to zero (dashed line). Note that the values of the
parameters chosen, given in the figure caption, correspond �+
= 0.092 while⌦ = 0.1. Hence the differences between the two
cases are expected to be rather small, as shown indeed in Fig. 2.
The overdamped limit m! 0 leads to a shift of the distribution
to shorter time scales compared to the inertial case. Therefore
inertia globally slows down the transition path dynamics in
analogy to the slowing down of Kramers’ times discussed ear-
lier [Eqs. (3) and (4)]. Note that at short time scales there is
an opposite behavior with more frequent fast crossing events
in the inertial regime [Eq. (20)] compared to the overdamped
regime [Eq. (26) implies pTP(t) ⇠ exp(���x2

0/t)]. This behav-
ior however involves a negligible fraction of transition paths as
shown in Fig. 2 (a second crossing between dashed and solid
lines takes place at short time scales; this is expected at times
1/|� | ⇡ 0.92).

V. THE AVERAGE TPT

The average value of the TPT is given by

htTPi =
⌅ +1

0
dt t pTP(t) =

s +1p
�E

t(G) e
�G

2
dG

s +1p
�E

e�G2
dG

, (28)

where we have rewritten the integral using a change of vari-
able G

0
dt = dG. From the analysis of Sec. IV, we have seen

that G(t) is a monotonic decreasing function of t and
p
�E

 G  +1.
We now present the results for the behavior of the average

TPT for large barriers. This asymptotic behavior is dominated
by the behavior of t(G) close to the lower bound G &

p
�E,

where both inertial and overdamped TPT distributions decay
exponentially (see Table I). The details of the calculations can
be found in Appendix B.

In the overdamped regime, Eq. (25) can be inverted easily
to yield t as a function of G, and we obtain asymptotically for
large barrier �E � 1

htTPi ⇡
�

K
log(2e

C �E), (29)

where C ⇡ 0.577 215 is the Euler-Mascheroni constant. This
result coincides with that previously obtained by Szabo.25,26

In the inertial case, Eq. (18) cannot be inverted to yield
t as a function of G. However, using the asymptotic form of
G, we show in Appendix B that the large barrier limit of the
average TPT is given by

htTPi ⇡
1
�+

(log �E + A) , (30)
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where the ”/”-sign signifies the fact that we have yet to normalize this, which is what we
will do next. We introduce a normalization constant A which we can fix using:

1 =

Z 1

0

pTPT(t) dt = A [psurv(0)� psurv(1)] = A [1� Erf (y0(+1))] = A
h
1� Erf

⇣p
�E

⌘i

(2.57)

leading us to the final, normalized result:

pTPT(t) =

r
�E

⇡

2⌦e�2⌦t

(1� e�2⌦t)3/2

exp
h
��E

�
1� e�2⌦t

��1
i

1� Erf
�p

�E
� (2.58)

This is a very central result in this thesis. To get a feel for the shape of this distribution
we have plotted this function for a few di↵erent values of ⌦ in Figure 2.5a. We will verify
Equation 2.58 using numerical simulations in Chapter 3 and compare this expression to
the distribution of transition path times we get from the simulations of the hairpin model
in Chapter 4. For now let’s discuss some of the properties Equation 2.58.

If we take the limit of high barrier �E � 1 we can use the asymptotic expansion:

1� Erf
⇣p

�E
⌘
⇡ e��E

p
�E⇡

(2.59)

Combining this with the limit ⌦t � 1 we see that Equation 2.58 reduces to the Gumbel
distribution [30]:

pTPT(t) = 2⌦�E exp
⇥
�2⌦t� �E e�2⌦t

⇤
(2.60)

Next we will discuss the shape of Equation 2.58 by looking at some limits, specifically
those for short and long times.

First up: Long times. If we let t ! inf in Equation 2.58 we get

pTPT(t) / e�2⌦t (2.61)

We plot this approximation along with the exact result in Figure 2.5b.

Next let us consider the limit t ! 0. This results in the following approximation:

pTPT(t) / e��E/2⌦t (2.62)

This was to be expected as transition path times of 0 should naturally be suppressed.
This approximation is also shown in Figure 2.5b.

⌦ = �D|U0”|

5

When t ! 0, �(t) ! 0 linearly in t, so that G(t) ! +1,
which implies S(0) = 1, as expected. When t ! 1,
G(t) !

p
�E0 so that S(+1) = Erf

�p
�E0

�
. This al-

lows to properly normalize the transition path time prob-
ability distribution function (31), which is thus given by

PTPT (t) = � 2p
⇡

G0(t)e�G2(t)

�
1� Erf

�p
�E0

�� (45)

This is the central equation of this article.
particle to cross the barrier (in any time) is given
Give some simple examples here with figures
In the overdamped case, the inertial term is small com-

pared to the friction term, which amounts to take m = 0
in the above calculations. We find

� = �2

!1 =
K

�

=
|U 00

0 |
�

= ⌦

!2 = �1

�(t) =

✓
kT

�⌦

�
e2⌦t � 1

�◆ 1
2

(46)

and the probability distribution for the TPT is given by

PTPT (t) =

r
�E0

⇡

2⌦e�2⌦t

(1� e�2⌦t)3/2
exp

�
��E0(1� e�2⌦t)�1

�

1� Erf
�p

�E0

�

(47)

For small time ⌦t ⌧ 1, the distribution goes to 0 like
exp(��E0

2⌦t ), while for ⌦t � 1, it behaves exponentially
as exp(�2⌦t). It is interesting to note that in terms of
the variable z defined by

e�2z = 1� e�2⌦t (48)

the distribution of TPT takes the form of a Gumbel law

PTPT (z) = 2

r
�E0

⇡

1

1� Erf
�p

�E0

�ez��E0e
2z

(49)

which is one of the standard extreme value distribution.
The average transition path time is given by

tTPT =

Z +1

0
dt t

r
�E0

⇡

2⌦e�2⌦t

(1� e�2⌦t)3/2
exp

�
��E0(1� e�2⌦t)�1

�

1� Erf
�p

�E0

�

(50)
and in the high barrier limit �E0 � 1, it is asymptoti-
cally given by

tTPT =
�

2|U 00
0 |

log
�
eC�E0

�
(51)

where C = 0.57721 is the Euler constant, � is the fric-
tion coe�cient, E0 is the barrier height and U 00

0 is the
curvature at the top of the barrier.
A similar (but slightly di↵erent) expression for the av-

erage TPT was obtained by A. Szabo ([? ]).
Give some simple examples here with figures
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It is possible to do the calculation with inertia term
Expressions are more complicated when inertia present
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interval [t, t + �t]; hence the TPT distribution can be approx-
imated as

pTP(t) ⇡ C
dQA(t)

dt
, (9)

where C is a normalization constant. This expression is approx-
imate as we are not imposing the appropriate absorbing bound-
ary conditions. When using free boundary conditions, the
left-hand side of Eq. (9) counts also paths with multiple cross-
ings at x0 and x0, which, strictly speaking, are not transition
paths. However, in the high barrier limit, these paths become
exceedingly rare and QA is a good approximation to the absorb-
ing boundary case. Finally, the normalization constant can be
obtained from
⌅ +1

0
pTP(t)dt = C [QA(+1) � QA(0)] = CQA(+1) = 1,

(10)

where we have used QA(0) = 0, from Eq. (8).

IV. TPT DISTRIBUTION FOR PARABOLIC BARRIER

We consider here a parabolic barrier centered in x = 0,
which corresponds to a repulsive linear force,

F(x) = Kx. (11)

For this system, the Langevin equation (1) is linear and can thus
be solved. Denoting the solution by x(t), the full propagator
can be written as

P(x, v , t |x0, v0, 0) = h�(x � x(t))�(v � ẋ(t))i. (12)

As we saw in Sec. III, the quantity of interest in Eq. (6) is

P(x, t |x0, 0) =

1⌅

�1

dv dv0 peq(v0)h�(x � x(t))�(v � ẋ(t))i. (13)

The integration over the velocity v is trivial (see details in
Appendix A), and we find

P(x, t |x0, 0) =

1⌅

�1

dv0 peq(v0)
1

p
2⇡�2(t)

exp
 
� (x � Xv0 (t))2

2�2(t)

!
.

(14)
Here Xv0 (t) is the solution of the deterministic equation of
motion for a particle originating in x0 and with initial velocity
v0 [see (A6)]. The variance �2(t), given in Eq. (A7), does not
depend on the initial conditions x0 and v0. It vanishes at short
times, while it diverges exponentially at large times.

The next step is the integration in the initial velocities.
Since v0 enters linearly in Xv0 and peq(v0) is Gaussian, Eq.
(6) boils down to a Gaussian integral which can be easily
performed (for details see Appendix A). The result is

P(x, t |x0, 0) =
1

p
2⇡�2(t)

exp
 
� (x � X0(t))2

2�2(t)

!
, (15)

where X0(t) is the deterministic solution of the equation of
motion for a particle with vanishing initial velocity v0 = 0.

The resulting distribution (15) is again Gaussian but with
�2(t) = �2(t) +  2

v (t), i.e., the variance, is larger than that
of the distribution (14). Here  2

v (t) indicates the contribution
obtained from integrating over the initial velocities [see Eq.
(A13)].

The final step is the calculation of QA, for which we get
(details in Appendix A)

QA(t) =
1
2

(1 � Erf(G(t))) , (16)

where the error function is defined as

Erf(x) ⌘ 2p
⇡

x⌅

0

du e
�u

2
(17)

and

G(t) ⌘ x0 � X0(t)
p

2�2(t)
. (18)

The full expressions for X0(t) and �(t) are given in
Appendix A, Eqs. (A10) and (A12). Using Eqs. (9) and (10)
and the calculation of the normalization constant given in
(A18), we arrive at the following expression for the TPT
distribution:

pTP(t) = � 2p
⇡

G
0(t)e�G

2(t)

1 � Erf(
p
�E)

, (19)

where G
0 ⌘ dG/dt is the time derivative of G(t), � = 1/kBT,

and E = Kx
2
0/2 is the barrier height.

The solid line in Fig. 2 shows a plot of the TPT distribution
as given by Eq. (19). This distribution vanishes at short times,
with a leading singular behavior due to the divergence of G(t)
in the limit t ! 0. From Eqs. (A10) and (A12), one finds at
short times

pTP(t) ⇠
t!0

e
�G

2(t) = exp *,�
2�mx

2
0

t2
+
- . (20)

FIG. 2. Transition path time distribution as obtained from Eq. (19) for a parti-
cle with inertia (m > 0) (solid line) and for the overdamped limit (dashed line)
obtained by setting m = 0 while keeping � fixed. The characteristic behavior
at short and long times is summarized in Table I. The parameters used are, in
dimensionless units, x0 = 10, K = 0.1,� = 1, m = 1, and kBT = 1 correspond-
ing to �E = 5. Inset: the same data in semi-logarithmic scales to emphasize
the exponential decay of the distribution at long times.

pTP(t) ⇠t!0 exp

✓
���x2

0

t

◆

Underdamped Overdamped

pTP(t) ⇠t!1 exp (�⌦t)pTP(t) ⇠t!1 exp (��t)

� =
�� +

p
�2 + 4Km

2m
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TABLE I. Summary of the asymptotic forms of G(t) and G
0(t) determining

the behavior of the TPT distribution (19) at short and long times. Both the iner-
tial and overdamped regimes are given. (Note: short and long times correspond
to the limits ⌦t ⌧ 1, |�±t| ⌧ 1 and ⌦t � 1, |�±t| � 1, respectively.)

Rates Short times Long times

Inertial
�± ⌘

�� ±
p
�

2m
G

2(t) ⇠
2�mx

2
0

t2
G
0(t) ⇠ �p�E

� = �2 + 4Km ⇥ 2
p
�

� +
p
�
�+e
��+t

Overdamped ⌦ ⌘ K

�
G

2(t) ⇠
��x

2
0

t
G
0(t) ⇠ �p�E⌦e

�⌦t

This result can be understood from the ballistic motion
of particles starting from x0. At short times, the effect of
the parabolic potential can be neglected and particles follow
a free motion x(t) ⇡ x0 + vt. The variance is then given
by

�2(t) = h(x(t) + x0)2i ⇡ hv2it2 =
kBT

m
t
2, (21)

where we have used the equipartition theorem mhv2i = kBT.
Plugging in this result in Eq. (18) and recalling that X0(t)
⇡ x0 at short times [Eq. (A10)], we obtain

G
2(t) =

(x0 � X0(t))2

2�2(t)
⇠

t!0

2x
2
0

�2(t)
=

2mx
2
0

kBT
t
�2, (22)

which explains the result of Eq. (20).
At long times, G(t) converges to a finite constant since

both the numerator and denominator in Eq. (18) diverge at
the same rate. The calculation gives G

2(t)! �E [Eq. (A23)].
However the derivative G

0(t) vanishes exponentially at large t

[Eq. (A24)] as

G
0(t) ⇠

t!1
e
��+t (23)

with

�+ =
�� +

p
�2 + 4Km

2m
, (24)

a characteristic rate of the process. The limiting behaviors of
G

2(t) and G
0(t) are summarized in Table I.

A. The overdamped regime

The overdamped limit is discussed in Appendix A 4.
In this case, the function G(t) has a particularly simple
expression,

G
2(t) = �E

1 + exp(�⌦t)
1 � exp(�⌦t)

, (25)

where ⌦ ⌘ K /� defines the characteristic rate of the over-
damped system. This distribution was derived in Ref. 13. The
short time behavior is

G
2(t) ⇡ 2�E

⌦t
=
��x2

0

t
, (26)

as expected from the diffusive behavior of the particles,
we have at short times 2�2 ⇡ 4Dt, while the numerator

(x0�X0(t))2 ⇡ 4x
2
0. Using the Einstein relation D = kBT /�, we

recover Eq. (26). At long times, G
2(t)! �E and

G
0(t) ⇡ �

p
�E⌦e

�⌦t . (27)

B. Comparing the overdamped and inertial cases

Figure 2 shows a comparison of the inertial TPT distribu-
tion (solid line) with the overdamped one, obtained by setting
the mass term to zero (dashed line). Note that the values of the
parameters chosen, given in the figure caption, correspond �+
= 0.092 while⌦ = 0.1. Hence the differences between the two
cases are expected to be rather small, as shown indeed in Fig. 2.
The overdamped limit m! 0 leads to a shift of the distribution
to shorter time scales compared to the inertial case. Therefore
inertia globally slows down the transition path dynamics in
analogy to the slowing down of Kramers’ times discussed ear-
lier [Eqs. (3) and (4)]. Note that at short time scales there is
an opposite behavior with more frequent fast crossing events
in the inertial regime [Eq. (20)] compared to the overdamped
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0/t)]. This behav-
ior however involves a negligible fraction of transition paths as
shown in Fig. 2 (a second crossing between dashed and solid
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V. THE AVERAGE TPT

The average value of the TPT is given by

htTPi =
⌅ +1

0
dt t pTP(t) =

s +1p
�E

t(G) e
�G

2
dG

s +1p
�E

e�G2
dG

, (28)

where we have rewritten the integral using a change of vari-
able G

0
dt = dG. From the analysis of Sec. IV, we have seen

that G(t) is a monotonic decreasing function of t and
p
�E

 G  +1.
We now present the results for the behavior of the average

TPT for large barriers. This asymptotic behavior is dominated
by the behavior of t(G) close to the lower bound G &

p
�E,

where both inertial and overdamped TPT distributions decay
exponentially (see Table I). The details of the calculations can
be found in Appendix B.

In the overdamped regime, Eq. (25) can be inverted easily
to yield t as a function of G, and we obtain asymptotically for
large barrier �E � 1

htTPi ⇡
�

K
log(2e

C �E), (29)

where C ⇡ 0.577 215 is the Euler-Mascheroni constant. This
result coincides with that previously obtained by Szabo.25,26

In the inertial case, Eq. (18) cannot be inverted to yield
t as a function of G. However, using the asymptotic form of
G, we show in Appendix B that the large barrier limit of the
average TPT is given by

htTPi ⇡
1
�+

(log �E + A) , (30)
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FIG. 5. Solid lines: TPT distributions obtained from Eq. (19) for various
K and �. Dashed lines: overdamped TPT distributions in the limit � ! 1.
Note that the solid line and dashed line coincide for the highest friction data
(� = 25). Symbols: TPT distributions from simulations. The other parame-
ters are x0 = 1 and kBT = 1. Deviations are observed between theory and
experiments for K = 2 and high friction (see discussion in the text).

boundary conditions (theory) and the absorbing boundary con-
ditions (simulations). This is in line with previous studies of the
overdamped distributions.13 Deviations are instead observed
in the K = 2 data, which are clearly visible at high friction,
close to the overdamped limit. Here the analytical calcula-
tion overestimates the TPT, leading to a broader distribution
compared to the simulations. This is because the theory with
free boundary conditions wrongly counts as transition paths
also those trajectories with multiple crossings at the bound-
aries, and these trajectories lead to high TPT. At low friction
and K = 2, however, theory and simulation match again. This
agreement can be understood as follows. As highlighted in the
calculations of Sec. IV, there are two contributions to the noise.
First, there is an intrinsic noise, contributing to the variance
�2(t) in Eq. (14). Second, the thermalization over different
initial velocities leads to an additional contribution  2

v (t) to
the variance so that the total variance is �2(t) = �2(t) +  2

v (t)
[see Eq. (A13)]. A simple analysis shows that �2(t) vanishes
at low �, whereas  2

v (t) converges to a non-vanishing con-
stant. At small friction, the trajectories are weakly influenced
by thermal noise and particles will follow closely the deter-
ministic trajectory; hence, in the free boundary case, multiple
crossings of the boundary at x0 will be rare. This is the reason

of the agreement between theory and simulations. Note that the
predominant contribution to the width of the TPT distribution
comes in this limit from  2

v (t), i.e., the distribution of initial
velocities.

VII. DISCUSSION

Conformational transition molecular systems between
two different states are governed by two time scales. Kramers’
time corresponds to the typical time spent in a given confor-
mation, while the transition path time characterizes the actual
duration of the transition. Transition path times, which have
been measured in protein and nucleic acid folding experiments
during the past decade,6–9,25 can be a few orders of magnitude
shorter than Kramers’ times.

In this paper, we have analyzed the TPT distribution
of a simple one-dimensional stochastic particle undergoing
Langevin dynamics and crossing a parabolic barrier. We
focused, in particular, to the inertial case, thus extending pre-
vious analysis13 in which inertial terms were neglected. As the
barrier is parabolic, the associated Langevin equation is linear
and hence exactly solvable. The inclusion of inertia makes the
calculations more complex than in the overdamped limit, but
an analytical form of the TPT distribution can still be obtained.
This solution is not exact as it does not use the appropriate
absorbing boundary conditions, but it approximates very well
the numerical simulations for steep barriers.

In general, inertia slows down the barrier crossing process.
The main properties of the TPT distribution have been summa-
rized in Table I. The distribution has an essential singularity at
short times, which is however of different nature in the over-
damped and inertial cases. At long times, the distribution van-
ishes exponentially in both cases. Differently from Kramers’
time, which is characterized by an exponential dependence on
the barrier height E, the average TPT in the overdamped limit
scales logarithmically htTPi ⇠ log(�E), where � is the inverse
temperature. We have shown here that the logarithmic depen-
dence also holds in the inertial case and have calculated the
prefactor.

TPT distributions were obtained recently by Pollak,21

who considered the case of an arbitrary memory friction. The
approach is based on the normal mode formulation where the
starting point is a Hamiltonian coupling the particle dynamics
to a bath of harmonic oscillators.29 Expressions for the TPT
distribution of Ref. 21 in the memoryless inertial case differs
from those given here, but they are expected to agree in the high
barrier limit. We conclude by remarking that, although in the
analysis of the dynamics of molecular systems the overdamped
limit is usually considered, owing to the short duration of TPT,
it is possible that inertial effects influence the barrier crossing
dynamics. The availability of an analytical closed form of the
TPT distribution in the inertial case may indeed be useful for
the analysis of future experiments.
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FIG. 5. Solid lines: TPT distributions obtained from Eq. (19) for various
K and �. Dashed lines: overdamped TPT distributions in the limit � ! 1.
Note that the solid line and dashed line coincide for the highest friction data
(� = 25). Symbols: TPT distributions from simulations. The other parame-
ters are x0 = 1 and kBT = 1. Deviations are observed between theory and
experiments for K = 2 and high friction (see discussion in the text).
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A useful form of the Bridge 
equation

Original bridge equation

2

Consider a system of particles, with N degrees of freedom, represented by a vector r. The particles of the system
interact through a conservative force derived from a potential U . The system is evolved using overdamped Langevin
dynamics

ṙ = � 1

�
rU + ⌘(t) (1)

where F = �rU is the force acting on the system, ⌘ is the Gaussian random force, and � is the friction coefficient.
The friction coefficient is related to the diffusion constant D and the temperature T through the Einstein relation

� =
kBT

D
=

1

D�
(2)

where � = 1/kBT . The friction is usually taken to be independent of T , so that the diffusion coefficient D is
proportional to the temperature T .

The moments of the Gaussian white noise are given by

h⌘a(t)i = 0

h⌘a(t)⌘a0(t0)i = 2D�aa0�(t� t0) (3)

where the index a denotes the component of the vector ⌘(t). As usually in the Langevin equation, the random force
⌘(t) is of order

p
T .

The probability distribution function P (r, t|ri, 0) = P (r, t) for the system to be at position r at time t given that
it was at position ri at time 0, satisfies a Fokker-Planck (FP) equation

@P

@t
= Dr (rP + �rU(r)P ) (4)

Among all the paths generated by the Langevin equation (1), we are only interested in those which are conditioned
to end at a given point rf at time tf [? ]. Although these paths are in general of zero measure in the ensemble of
paths originating from (ri, 0) , there is an infinite number of them. We are interested to generate only those paths
satisfying this constraint. For this purpose, we use the method of Brownian bridges (cite) introduced through the
Doob transform (cite). We denote by P(r, t) the probabilty that the conditioned system is at point r at time t. We
have

P(r, t) =
P (rf , tf |r, t)P (r, t|ri, 0)

P (rf , tf |ri, 0)
(5)

The probability P (r, t|ri, 0) satisfies eq.(4) whereas the function Q1(r, t) = P (rf , tf |r, t) above satisfies the reverse or
adjoint Fokker-Planck equation (cite)

@Q1

@t
= �Dr2Q1 +D�rU(r)rQ1 (6)

Using eq.(4) and (6), one can easily see that P(r, t) satisfies the modified FP equation

@P
@t

= Dr (rP +r (�U(r)� 2 lnQ1)P ) (7)

from which we see that the position r(t) of the conditioned system satisfies a modified Langevin equation given by

ṙ = � 1

�
rU + 2Dr lnQ1 + ⌘(t) (8)

Using the path-integral representation

3

This equation is called a bridge equation (cite). The additional force term 2Dr lnQ1 (w.r.t. the original Langevin
equation) conditions the paths and guarantees that they will end at (rf , tf ). We can use a path integral representation
for Q1 (cite)

Q1(r, t) = P (rf , tf |r, t)

=

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e�

1
4D

´ tf
t d⌧(ṙ+ 1

� rU)2 (9)

= e��(U(rf )�U(r))

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(10)

where the effective potential V is given by

V (r) =
1

4
(rU)2 � kBT

2
r2U (11)

The driving term Q1(r, t) is a sum over all paths joining (r, t) to (rf , tf ), properly weighted by the so-called Onsager-

Machlup action (cite) 1
4D

´ tf
t d⌧

⇣
ṙ+ 1

�rU
⌘2

.
The above equations are obtained by transforming the Ito form of the path integral (9) into the Stratonovich form

(10), when expanding the square, and using the identity of stochastic calculus []

ˆ tf

t
d⌧ ṙrU(r(⌧)) = U(rf )� U(r)�D

ˆ tf

t
d⌧r2U(r(⌧)) (12)

Defining

Q(r, t) =

ˆ r(tf )=rf

r(t)=r
Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(13)

the bridge equation (8) becomes

ṙ = 2Dr lnQ+ ⌘(t) (14)

In the Supplemental Material, using the path integral representation (13) and performing several integrations by
part, we show that this equation can be exactly recast in the following integral equation

ṙ =
rf � r(t)

tf � t
� 2

�2

ˆ tf

t
d⌧

✓
tf � ⌧

tf � t

◆
hrV (r(⌧))iQ + ⌘(t) (15)

where the bracket h· · · iQ denotes the average over all paths joining (r, t) to (rf , tf ), weighted by the action of eq.
(13)

hrV (r(⌧))iQ =
1

Q(r, t)

ˆ r(tf )=rf

r(t)=r
Dr(⌧)rV (r(⌧)) e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(16)

and the Gaussian noise is defined by eq.(3). Note that the first term in the r.h.s of equation (15) guarantees that
the constraint r(tf ) = rf is satisfied. It is the only term which is singular at time tf . In fact, in the case of a free
Brownian particle, the effective potential V vanishes, and we recover the standard equation for free Brownian bridges

ṙ =
rf � r(t)

tf � t
+ ⌘(t) (17)

The above equation (15) is the fundamental equation of this article and will be used to generate constrained paths.
This equation is a non linear stochastic equation. It is Markovian, in the sense that the r.h.s. of (15) depends only
on r(t). However, the presence of the average over all future paths makes it difficult to use.
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ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

(10)

where the effective potential V is given by

V (r) =
1

4
(rU)2 � kBT

2
r2U (11)

The driving term Q1(r, t) is a sum over all paths joining (r, t) to (rf , tf ), properly weighted by the so-called Onsager-

Machlup action (cite) 1
4D

´ tf
t d⌧

⇣
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the constraint r(tf ) = rf is satisfied. It is the only term which is singular at time tf . In fact, in the case of a free
Brownian particle, the effective potential V vanishes, and we recover the standard equation for free Brownian bridges
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The above equation (15) is the fundamental equation of this article and will be used to generate constrained paths.
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• If no potential V=0, one recovers the standard free 
Brownian bridge equation

• The only singular term is the free Brownian bridge term. 
It is the term which conditions the paths

• Highly non-Markovian and depends on the future of the 
trajectory
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The above equations are obtained by transforming the Ito form of the path integral (9) into the Stratonovich form
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the bridge equation (8) becomes

ṙ = 2Dr lnQ+ ⌘(t) (14)

In the Supplemental Material, using the path integral representation (13) and performing several integrations by
part, we show that this equation can be exactly recast in the following integral equation
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and the Gaussian noise is defined by eq.(3). Note that the first term in the r.h.s of equation (15) guarantees that
the constraint r(tf ) = rf is satisfied. It is the only term which is singular at time tf . In fact, in the case of a free
Brownian particle, the effective potential V vanishes, and we recover the standard equation for free Brownian bridges

ṙ =
rf � r(t)

tf � t
+ ⌘(t) (17)

The above equation (15) is the fundamental equation of this article and will be used to generate constrained paths.
This equation is a non linear stochastic equation. It is Markovian, in the sense that the r.h.s. of (15) depends only
on r(t). However, the presence of the average over all future paths makes it difficult to use.
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ṙ+ 1

�rU
⌘2

.
The above equations are obtained by transforming the Ito form of the path integral (9) into the Stratonovich form

(10), when expanding the square, and using the identity of stochastic calculus []

ˆ tf

t
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ṙ =
rf � r(t)

tf � t
+ ⌘(t) (17)
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Zero Temperature
At T=0, only one trajectory and the equation becomes

4

Weak dispersion

In case the trajectories are not too disperse, we can use the approximation

hrV (r(⌧))iQ ⇡ rV (hr(⌧)iQ) (18)

Within this approximation, denoting the average hr(⌧)iQ by r(⌧), eq.(15) becomes
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As mentioned above, this equation is valid when the trajectories are not too much dispersed around the average
trajectory. There are two obvious cases when this condition is satisfied:

• Low temperature: at low temperatures, thermal fluctuations are small and the trajectories are concentrated
around the zero temperature trajectory

• Transition paths: these are the paths which go from the initial state I of coordinates (ri, 0) to the final state F
of coordinates (rf , tf ) when there is a large energy barrier �E in between. In that case, it has been shown (cite)
that the transition path time ⌧TP (average first passage time from I to F, without returning to I) is very short,
scaling like ln��E, much shorter than the average Kramers time ⌧K (average time between two transitions
from I to F) which scales like exp(��). As a result, the transition paths are very stretched and they have very
mall fluctuations (see fig.figure).

Zero temperature and low temperature expansion

At zero temperature, the noise term vanishes and the average in (15) reduces to a single trajectory r0(t). We thus
have
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where V0(r) =
1
4 (rU)2 is the zero temperature effective potential (11). Let us show that this equation is equivalent

to the usual zero temperature instanton equation []. Indeed, taking a time derivative of the above equation we get
easily
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rU(r0).r2U(r0) (21)

which, supplemented by the boundary conditions r0(0) = ri and r0(tf ) = rf , is the standard instanton equation
(cite). As mentioned above, the non-linear equation (20) is solved iteratively, starting from an approximate solution
which we will discuss later. The two equivalent equations (20) and (21) can of course have several solutions. In the
case of (20), the solution depends on the initial guess.

At low temperature, we can expand the trajectories in (??) as

r↵(t) = r0(t) + u↵(t)

where u↵(t) is the correction term. Since the noise is of order
p
T while the correction to V0 is of order T , to lowest

order, one may expand eq.(??) as
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where, in the limit M ! 1 , u(t) = 1
M

PM
↵0=1 u↵(t) satisfies the equation
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As mentioned above, this equation is valid when the trajectories are not too much dispersed around the average
trajectory. There are two obvious cases when this condition is satisfied:

• Low temperature: at low temperatures, thermal fluctuations are small and the trajectories are concentrated
around the zero temperature trajectory

• Transition paths: these are the paths which go from the initial state I of coordinates (ri, 0) to the final state F
of coordinates (rf , tf ) when there is a large energy barrier �E in between. In that case, it has been shown (cite)
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As mentioned above, this equation is valid when the trajectories are not too much dispersed around the average
trajectory. There are two obvious cases when this condition is satisfied:

• Low temperature: at low temperatures, thermal fluctuations are small and the trajectories are concentrated
around the zero temperature trajectory

• Transition paths: these are the paths which go from the initial state I of coordinates (ri, 0) to the final state F
of coordinates (rf , tf ) when there is a large energy barrier �E in between. In that case, it has been shown (cite)
that the transition path time ⌧TP (average first passage time from I to F, without returning to I) is very short,
scaling like ln��E, much shorter than the average Kramers time ⌧K (average time between two transitions
from I to F) which scales like exp(��). As a result, the transition paths are very stretched and they have very
mall fluctuations (see fig.figure).
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(cite). As mentioned above, the non-linear equation (20) is solved iteratively, starting from an approximate solution
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This is the exact zero temperature equation: Instanton 
Theory and String Method.
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As mentioned above, this equation is valid when the trajectories are not too much dispersed around the average
trajectory. There are two obvious cases when this condition is satisfied:

• Low temperature: at low temperatures, thermal fluctuations are small and the trajectories are concentrated
around the zero temperature trajectory

• Transition paths: these are the paths which go from the initial state I of coordinates (ri, 0) to the final state F
of coordinates (rf , tf ) when there is a large energy barrier �E in between. In that case, it has been shown (cite)
that the transition path time ⌧TP (average first passage time from I to F, without returning to I) is very short,
scaling like ln��E, much shorter than the average Kramers time ⌧K (average time between two transitions
from I to F) which scales like exp(��). As a result, the transition paths are very stretched and they have very
mall fluctuations (see fig.figure).
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ṙ0 =
rf � r0(t)

tf � t
� 2

�2

ˆ tf

t
d⌧

✓
tf � ⌧

tf � t

◆
rV0(r0(⌧)) (20)
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which, supplemented by the boundary conditions r0(0) = ri and r0(tf ) = rf , is the standard instanton equation
(cite). As mentioned above, the non-linear equation (20) is solved iteratively, starting from an approximate solution
which we will discuss later. The two equivalent equations (20) and (21) can of course have several solutions. In the
case of (20), the solution depends on the initial guess.
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Weak Fluctuations
If fluctuations of trajectories are small (low T or Transition 
paths), use the approximation
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In case the trajectories are not too disperse, we can use the approximation
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As mentioned above, this equation is valid when the trajectories are not too much dispersed around the average
trajectory. There are two obvious cases when this condition is satisfied:

• Low temperature: at low temperatures, thermal fluctuations are small and the trajectories are concentrated
around the zero temperature trajectory

• Transition paths: these are the paths which go from the initial state I of coordinates (ri, 0) to the final state F
of coordinates (rf , tf ) when there is a large energy barrier �E in between. In that case, it has been shown (cite)
that the transition path time ⌧TP (average first passage time from I to F, without returning to I) is very short,
scaling like ln��E, much shorter than the average Kramers time ⌧K (average time between two transitions
from I to F) which scales like exp(��). As a result, the transition paths are very stretched and they have very
mall fluctuations (see fig.figure).

Zero temperature and low temperature expansion

At zero temperature, the noise term vanishes and the average in (15) reduces to a single trajectory r0(t). We thus
have
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where V0(r) =
1
4 (rU)2 is the zero temperature effective potential (11). Let us show that this equation is equivalent

to the usual zero temperature instanton equation []. Indeed, taking a time derivative of the above equation we get
easily
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which, supplemented by the boundary conditions r0(0) = ri and r0(tf ) = rf , is the standard instanton equation
(cite). As mentioned above, the non-linear equation (20) is solved iteratively, starting from an approximate solution
which we will discuss later. The two equivalent equations (20) and (21) can of course have several solutions. In the
case of (20), the solution depends on the initial guess.

At low temperature, we can expand the trajectories in (??) as
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The Bridge equation becomes
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Weak dispersion

In case the trajectories are not too disperse, we can use the approximation
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As mentioned above, this equation is valid when the trajectories are not too much dispersed around the average
trajectory. There are two obvious cases when this condition is satisfied:

• Low temperature: at low temperatures, thermal fluctuations are small and the trajectories are concentrated
around the zero temperature trajectory

• Transition paths: these are the paths which go from the initial state I of coordinates (ri, 0) to the final state F
of coordinates (rf , tf ) when there is a large energy barrier �E in between. In that case, it has been shown (cite)
that the transition path time ⌧TP (average first passage time from I to F, without returning to I) is very short,
scaling like ln��E, much shorter than the average Kramers time ⌧K (average time between two transitions
from I to F) which scales like exp(��). As a result, the transition paths are very stretched and they have very
mall fluctuations (see fig.figure).

Zero temperature and low temperature expansion

At zero temperature, the noise term vanishes and the average in (15) reduces to a single trajectory r0(t). We thus
have

ṙ0 =
rf � r0(t)

tf � t
� 2

�2

ˆ tf

t
d⌧

✓
tf � ⌧

tf � t

◆
rV0(r0(⌧)) (20)

where V0(r) =
1
4 (rU)2 is the zero temperature effective potential (11). Let us show that this equation is equivalent

to the usual zero temperature instanton equation []. Indeed, taking a time derivative of the above equation we get
easily

r̈0 =
2

�2
rV0(r0) =

1

�2
rU(r0).r2U(r0) (21)

which, supplemented by the boundary conditions r0(0) = ri and r0(tf ) = rf , is the standard instanton equation
(cite). As mentioned above, the non-linear equation (20) is solved iteratively, starting from an approximate solution
which we will discuss later. The two equivalent equations (20) and (21) can of course have several solutions. In the
case of (20), the solution depends on the initial guess.

At low temperature, we can expand the trajectories in (??) as

r↵(t) = r0(t) + u↵(t)

where u↵(t) is the correction term. Since the noise is of order
p
T while the correction to V0 is of order T , to lowest

order, one may expand eq.(??) as

u̇↵ =
�u↵(t)

tf � t
� 2

�2

ˆ tf

t
d⌧

✓
tf � ⌧

tf � t

◆
(u(⌧).r)rV0(r0(⌧)) + ⌘↵(t) (22)

where, in the limit M ! 1 , u(t) = 1
M

PM
↵0=1 u↵(t) satisfies the equation

Not Markovian.
Valid at order 1 in T 



Iterative Solution
This is a Non-Linear, Integro-Differential, non Markovian 
Stochastic Equation
Solve it by iteration. Discretize à la Euler-Maruyama

5
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�u(t)

tf � t
� 2

�2

ˆ tf

t
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✓
tf � ⌧

tf � t

◆
(u(⌧).r)rV0(r0(⌧)) (23)

Indeed, due to the central limit theorem, the average noise 1
M

P
M ⌘↵(t) is Gaussian, with zero mean, and variance

of order 1/
p
M . Therefore it disappears from (23) in the limit of large M . Furthermore, the boundary conditions on

u(t) are u(0) = 0 and u(tf ) = 0, since r0(t) already satisfies the imposed boundary conditions. Note that taking a
time derivative of (23), we find that this equation is equivalent to

ü =
2

�2
(u(t).r)rV0(r0(t)) (24)

Note that a solutions to eq.(24) is u(t) = 0, which satisfies the boundary conditions.
Finally, eq.(22) can be written as

u̇↵ � u̇ = � (u↵(t)� u(t))

tf � t
+ ⌘↵(t) (25)

The strategy for the low temperature expansion is thus to first solve for the zero temperature trajectory, eq.(20),
then solve for the average eq.(23) and then generate any number of independent trajectories using (22).

Fixed point method

The simplest method to solve the non-linear integro-differential stochastic equations (??), (20) and (23) is to use
an iterative fixed point method.

There are several ways to implement the iterative method to solve these equations, depending on the way one splits
the equations (??), (20) and (23) into the form of a recursion. However, as is well known, the convergence depends
crucially on the choice of the initial guess. On the examples we studied, we found that an efficient method to solve
the equation is to use a Euler-Maruyama discretization scheme for the equation, dividing the time tf in I intervals
of size dt, so that tf = Idt. The integral can be calculated with the same dt or with a larger one, to speed up the
computation. Denoting by r(n)(k) the n-th iteration of the trajectory at time t = kdt, we write the iteration as

r(n+1)(k + 1) = r(n)(k)dt+
rf � r(n)(k)

tf � kdt
dt� 2

�2

1

M

MX

↵0=1

I�1X

k0=k

✓
tf � k0dt

tf � kdt

◆
dtrV(r(n)↵0 (k0)) +

p
(2Ddt)⇠(k) (26)

where ⇠(k) is a normalized Gaussian variable

h⇠a(k)i = 0

h⇠2a(k)i = 1 (27)

In equation (26), the initial condition is r(n)(0) = ri and the noise ⇠(k) is the same for all the iterations. This equation
is iterated in n until convergence to the equation (??). As stated above, the convergence of the process very much
depends on the initial guessed trajectories {r(0)↵ (k)}. We now show how to initialize the iteration process, using the
cumulant expansion developed in [].

The cumulant expansion

In a previous work (cite), we had devised an approximation to generate constrained trajectories using a cumulant
expansion for the function Q. Indeed, using the identity

Q(r, t)

Q0(r, t)
=

´ r(tf )=rf
r(t)=r Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2

4D+ 1
D�2 V (r(⌧))

⌘

´ r(tf )=rf
r(t)=r Dr(⌧)e�

´ tf
t d⌧ ṙ2

4D

= he�
1

D�2

´ tf
t d⌧V (r(⌧))i0 (28)

Choose an initial trajectory
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ü =
2

�2
(u(t).r)rV0(r0(t)) (24)

Note that a solutions to eq.(24) is u(t) = 0, which satisfies the boundary conditions.
Finally, eq.(22) can be written as

u̇↵ � u̇ = � (u↵(t)� u(t))

tf � t
+ ⌘↵(t) (25)

The strategy for the low temperature expansion is thus to first solve for the zero temperature trajectory, eq.(20),
then solve for the average eq.(23) and then generate any number of independent trajectories using (22).

Fixed point method

The simplest method to solve the non-linear integro-differential stochastic equations (??), (20) and (23) is to use
an iterative fixed point method.

There are several ways to implement the iterative method to solve these equations, depending on the way one splits
the equations (??), (20) and (23) into the form of a recursion. However, as is well known, the convergence depends
crucially on the choice of the initial guess. On the examples we studied, we found that an efficient method to solve
the equation is to use a Euler-Maruyama discretization scheme for the equation, dividing the time tf in I intervals
of size dt, so that tf = Idt. The integral can be calculated with the same dt or with a larger one, to speed up the
computation. Denoting by r(n)(k) the n-th iteration of the trajectory at time t = kdt, we write the iteration as

r(n+1)(k + 1) = r(n)(k)dt+
rf � r(n)(k)

tf � kdt
dt� 2

�2

I�1X

k0=k

✓
tf � k0dt

tf � kdt

◆
dtrV (r(n)(k0)) +

p
(2Ddt)⇠(k) (26)

where ⇠(k) is a normalized Gaussian variable

h⇠a(k)i = 0

h⇠2a(k)i = 1 (27)

In equation (26), the initial condition is r(n)(0) = ri and the noise ⇠(k) is the same for all the iterations. This equation
is iterated in n until convergence to the equation (??). As stated above, the convergence of the process very much
depends on the initial guessed trajectories {r(0)(k)}. We now show how to initialize the iteration process, using the
cumulant expansion developed in [].

The cumulant expansion

In a previous work (cite), we had devised an approximation to generate constrained trajectories using a cumulant
expansion for the function Q. Indeed, using the identity

Q(r, t)

Q0(r, t)
=

´ r(tf )=rf
r(t)=r Dr(⌧)e

�
´ tf
t d⌧

⇣
ṙ2
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Iterate above equation
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Choice of Initial Trajectory

• Use a free Brownian bridge trajectory 

• Iterate from there

ṙ =
rf � r

tf � t
+ ⌘(t)
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Example: Quartic double well

• We take

66

U(x) =
1
4
(x2 � 1)2

V (x) =
1

4kBT
(U 02(x)� 2kBTU 00(x))

T = 0.05
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Figure 2: Potential U(x) (in black) and potential V (x) (in red).

I. EXAMPLE: THE QUARTIC DOUBLE-WELL

We now illustrate the method on the example of barrier crossing in 1d (quartic potential).

U(x) =
1

4
(x2 − 1)2

This potential has two minima at x = ±1, separated by a barrier of height 1/4. Note

that at low enough temperature, the potential V (x) has two minima at points close to ±1

and one minimum at x = 0 (from eq.(2)). Note that V (x) is much steeper than U(x) and

thus more confining, around its minima.

The model can be solved exactly by solving numerically the Fokker-Planck equation or

by diagonalizing the Hamiltonian. All the examples are performed at low temperature

T = 0.05, where the barrier height is equal to 5 in units of kBT and the Kramers relaxation

time, given by the inverse of the smallest non-zero eigenvalue of H, is equal to τK = 366.39.
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Langevin

Figure 3: Full Langevin trajectory during time tf = 1000 with 2 transitions between the minima

On fig.3, we present a long trajectory (tf = 1000) obtained by solving the Langevin

eq.(1) for a particle starting at x0 = −1 at time 0. The general pattern described in the

introduction can be easily checked: the particle stays in the left well for a time of the order

of 550, then jumps very rapidly into the right well, where it stays for a time of the order of

200, then jumps back to the left well where it stays again a time equal to about 250.

The two crossings times are very short, and we display an enlargement of the first tran-

sition in fig.4.

As can be seen, the crossing time for this specific trajectory is approximately τC ≈ 2.5,

much smaller than the Kramers time.

In fig.5, we plot two examples of two trajectories conditioned to cross the barrier during

a time tf = 5. The trajectory in black is obtained by solving the exact bridge eq.(14) by

computing exactly (using a spectral decomposition) the matrix element of the evolution

operator, while the trajectory in red is obtained by solving the approximate eq.(19) with

13

554.5 555 555.5 556 556.5 557 557.5

-1

-0.5

0

0.5

1

Figure 4: Enlargement of the first transition region
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Figure 5: Two sets (a) and (b) of exact trajectories (in black) and approximate trajectories (in red)

the exact same sequence of noise η(t). In the left figure, the 2 trajectories are barely

distinguishable, whereas the agreement is not as spectacular on the right figure.

Next we look at some observables, obtained by averaging over many trajectories.
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Trajectories
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Exact trajectories (in black) obtained from spectral 
decomposition.
Approximate trajectories in red (with same noise)
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τTP ≈ 3.5



The Mueller potential

69

The potential is given by

V (x, y) =
4�

i=1

Ai exp
�
ai(x− x0

i )
2 + bi(x− x0

i )(y − y0
i ) + ci(y − y0

i )
2
�

(2.2)

where A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6),

c = (−10,−10,−6.5, 0.7), x0 = (1, 0,−0.5,−1), and y0 = (0, 0.5, 1.5, 1). The neighborhood

of the Müller-Brown potential we explore is shown in Figure 3 along with a listing of the fixed

points, their energy, and their classification. We first discuss the initialization of the ring,

and then three different forms of “backward stepping”: time-stepping, arclength-stepping in

(phase space)×(time) and potential-stepping. Our initial ring will be the V = −105 energy

contour surrounding the minimum at (0.62, 0.03).

A ring is a smooth curve Φ, here in two dimensions. In our implementation, we dis-

cretize this curve and denote the instantaneous position of the discretized ring by the vectors

Φi ≡ Φ(αi, t) = [x(αi, t), y(αi, t)] (with Φi in R2, αi in R) for the coordinates of the ith dis-

cretization node, where αi is a suitable parametrization. A natural choice is the normalized

arc-length along the ring with αi ∈ [0, 1], as in the string method, but now with periodic

boundary conditions. Note that one does not need to initialize on an exact isopotential

contour; keeping the analogy with local stable manifolds of a dynamical system fixed point,

one can use the local linearization – and more generally, local Taylor series – to approximate

a closed curve on the manifold. Anticipating the “energy-stepping” reverse evolution mode,

however, we start with an isopotential contour here. This requires an initial point on the

surface; we then trace the isopotential contour passing through this point using a scheme

which resembles the sliding stage in the “Step and Slide” method of Miron and Fichthorn22

for saddle point identification. We simply “slide” along the contour to generate a curve Γ,

moving (in some pseudo-time τ) perpendicular to the local energy gradient according to

dΓ

dτ
=




∂V/∂y

−∂V/∂x



 . (2.3)
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Figure 1: Langevin bridge trajectories on the Mueller potential. (A) Contour plot
of the Mueller potential, with the three minima labeled A, B, and C, and the two saddle
points between those minima indicated with an x. 500 converged trajectories between the
minima A and B (B), B and C (C), and A and C (D). The unweighted mean trajectories are
shown in white.

.
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jectories AB, we obtain R ⇡ 5.310�2, R ⇡ 0.68 for BC and R ⇡ 1.13 for AC. Therefore,

the approximation is quite reliable for the AB trajectories, but less for the others. In fact,

it is instructive to study the accuracy of the method when varying tf . For that matter, in

Fig. 2, we plot the factor R as a function of tf , for the AB transition. We see that for

both small and large tf , the factor R is small, with a maximum at tf ⇡ 0.05. For small

tf , the trajectories fluctuate around the straight line trajectory joining A to B through high

barriers (see Fig. 1A). For large tf , the trajectories fluctuate around the potential energy

valley joining A to B. As tf increases from small values, the ensemble of trajectories include

trajectories going through the high barrier and through the valley, and at tf ⇡ 0.05, there

is a strong mixing of both types of trajectories, giving rise to a large value of R. When tf

increases further, the trajectories going through the barrier disappear from the ensemble,

and only valley trajectories remain, yielding a decrease of R.

The Mexican hat potential

The potential of the Mexican hat is given by

U(x, y) =
1

4
(x2 + y

2 � 1)2 (27)

and has therefore a circle of minima for x2+y
2 = 1 with U = 0 and a maximum at (0, 0) with

energy U = 1/4. Again we solve equations (23), using 50 points for the u integral. Given the

small barrier of this potential �U = 1/4, we go to low temperature. On Fig.3A, we plot 100

trajectories, generated at temperature T = 0.1, starting at (�1, 0) and all ending at (1, 0).

The total time is tf = 7 and the time step is dt = 10�4. The quality criterion (24) gives

R = 0.345. The trajectories divide into three dominant groups, those that take a northern

route (30), those that take a southern route (40) along the circle of minima, and those that

go directly through the energy barrier (30). The distribution into those three groups was

decided based on the mean value Ymean for the y coordinates along the trajectories. If we take

15

Mexican Hat Potential



jectories AB, we obtain R ⇡ 5.310�2, R ⇡ 0.68 for BC and R ⇡ 1.13 for AC. Therefore,

the approximation is quite reliable for the AB trajectories, but less for the others. In fact,

it is instructive to study the accuracy of the method when varying tf . For that matter, in

Fig. 2, we plot the factor R as a function of tf , for the AB transition. We see that for

both small and large tf , the factor R is small, with a maximum at tf ⇡ 0.05. For small

tf , the trajectories fluctuate around the straight line trajectory joining A to B through high

barriers (see Fig. 1A). For large tf , the trajectories fluctuate around the potential energy

valley joining A to B. As tf increases from small values, the ensemble of trajectories include

trajectories going through the high barrier and through the valley, and at tf ⇡ 0.05, there

is a strong mixing of both types of trajectories, giving rise to a large value of R. When tf

increases further, the trajectories going through the barrier disappear from the ensemble,

and only valley trajectories remain, yielding a decrease of R.

The Mexican hat potential

The potential of the Mexican hat is given by

U(x, y) =
1

4
(x2 + y

2 � 1)2 (27)

and has therefore a circle of minima for x2+y
2 = 1 with U = 0 and a maximum at (0, 0) with

energy U = 1/4. Again we solve equations (23), using 50 points for the u integral. Given the

small barrier of this potential �U = 1/4, we go to low temperature. On Fig.3A, we plot 100

trajectories, generated at temperature T = 0.1, starting at (�1, 0) and all ending at (1, 0).

The total time is tf = 7 and the time step is dt = 10�4. The quality criterion (24) gives

R = 0.345. The trajectories divide into three dominant groups, those that take a northern

route (30), those that take a southern route (40) along the circle of minima, and those that

go directly through the energy barrier (30). The distribution into those three groups was

decided based on the mean value Ymean for the y coordinates along the trajectories. If we take

15

Figure 3: Langevin bridge trajectories on the Mexican hat potential. (A) 100 con-
verged trajectories, all starting at (�1, 0) and ending at (1, 0), and generated at temperature
T = 0.1 with a duration tf = 7 . Note that with this short transition time, many trajectories
go through the barrier region. (B) Same as in (A), but with tf now set to 10. Most of the
trajectories now follow the circle of minima; those trajectories are nearly equally divided
into two groups, those that follow the upper side of the circle (44), and those that follow the
lower side (47) (see text for details).
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Test of the method:
 Allosteric transition of 

Adenylate Kinase
• Work with P.  Koehl (UC Davis) and M. 

Delarue (Institut Pasteur, Paris)

• Transition studied by several groups: good 
benchmark

• System has two (meta)stable configurations 
PDB 1AKE.pdb and 4AKE.pdb

• Make a Gaussian Elastic Network model for 
each structure



• Define mixed elastic network model by

• Collision term to avoid steric clashes during 
the transition

•

and has therefore a circle of minima for x
2+y

2 = 1 with U = 0 and a maximum at (0, 0) with
energy U = 1/4. Again we solve equation (24), using 50 points for the u integral. Given the
small barrier of this potential �U = 1/4, we go to low temperature. On Fig.3A, we plot 100
trajectories, generated at temperature T = 0.1, starting at (�1, 0) and all ending at (1, 0).
The total time is tf = 7 and the time step is dt = 10�4. The quality criterion (25) gives
R = 0.345. The trajectories divide into three dominant groups, those that take a northern
route (30), those that take a southern route (40) along the circle of minima, and those that
go directly through the energy barrier (30). The distribution into those three groups was
decided based on the mean value Ymean for the y coordinates along the trajectories. If we take
a longer duration, the fraction of trajectories that go through the central barrier decreases.
For example, for tf = 10, there are only 9 of those trajectories, as seen on Fig. 3B. The
quality criterion is then R = 0.266.

3.3 The Mixed ENM Energy Model for Proteins

We now use the CLD method to explore conformational transitions in proteins using the“Mixed
ENM” energy model.

3.3.1 The Energy Model

The energy function is the combination of the mixed elastic model and a collision term

Utot = UMix�ENM + Ucollision (29)

where

UMix�ENM = � 1

�m

log(e��mUA + e
��mUB) (30)

where UA is the ENM Energy centered on conformation A (initial) and UB the ENM Energy
centered on conformation B (final), as defined originally by Tirion [55], and �m is the inverse
of the mixing Temperature Tm [9].

UA =
X

ij

kijCij(dij � d
A

ij
)2 (31)

UB =
X

ij

kijCij(dij � d
B

ij
)2 + �U (32)

where Cij is a contact matrix that is set to 1 if dij < Rc and 0 otherwise and kij is its
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with the bridge equation.34–36 We first revisited this concept of
bridge between the initial and final configurations and have shown
that it can be recast exactly in the form of a non-linear stochastic
integro-differential equation. We have shown that this equation can
be very well approximated when the trajectories are closely bun-
dled together in space, i.e., at low temperature. We described one
such approximation, and we derived a fixed point method to solve
the corresponding equations efficiently. Finally, we illustrated the
method on simple test cases, a quartic potential and the classical
problem of finding minimum energy trajectories along the Mueller
potential.

Our main result is a recast of the bridge equation into a non-
linear stochastic integro-differential equation, Eq. (17). This exact
equation is unfortunately difficult to solve as it expresses the velocity
along the trajectory at a time t as an integral of a quantity that is aver-
aged over the evolutions of trajectories beyond time t. However, we
have established approximations that proved effective to derive the
path at zero temperature and an ensemble of paths at low temper-
atures. Those approximations lead to equations that can be solved
iteratively using a fixed point method; see Eq. (27). Solving stochas-
tic integro-differential equations using a fixed point method is not
always easy, however, and remains an active research area in numer-
ical analysis. In this paper, we applied a standard Euler–Maruyama
scheme45 and showed that it was successful on simple examples,
namely, a 1D potential and a 2D potential. We recognize that we
will most likely need more sophisticated solvers for more com-
plicated systems. One possible approach we are currently working
on is to replace the first-order integro-differential equation with a
second-order differential equation. Indeed, if we take, for example,
the approximation given by Eq. (26), we can differentiate on both
sides,

r̈ = ⌐ ω(t)
tf ⌐ t

+ 2
ϵ2∇V(r) + dω

dt

with the constraints that r = ri at t = 0 and r = rf at t = t f . There
are two main approaches for solving such second-order differen-
tial equations with two boundary conditions, the shooting methods
and the relaxation methods.46 We will test both for more complex
systems, such as proteins.
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APPENDIX: COMPUTING THE GRADIENT OF ln(Q)

In this appendix, we prove the central equation of this article,
namely, Eq. (17). For that matter, we need to compute the gradient
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We may then integrate by part the term⌐rk+1 and obtain

⌐Q(r, t) = ⩀ rN=r f

rk=r
drk+1 ⋅ ⋅ ⋅drN⌐1e

⌜⌐⩀N⌐1
l=k+2 ⌜ ⌜rl+1⌐rl⌜2

4Ddt + dt
Dω2 V(rl)⌝⌝

⋊ ⌜ rk+2 − rk+1

2Ddt
− dt

Dω2 (⌐V(rk+1) +⌐V(r))⌜
⋊ e
⌜⌐⌜ ⌜rk+2⌐rk+1⌜2

4Ddt + ⌜rk+1⌐r⌜2

4Ddt + dt
Dω2 (V(rk+1)+V(r))⌝⌝

. (A3)

By repeating this procedure, we obtain

⌐Q(r, t) = ⩀ rN=r f

rk=r
drk+1 ⋅ ⋅ ⋅drN⌐1⌜ rf − rN⌐1

2Ddt
− dt

Dω2

N⌐1⊍
l=k
⌐V(rl)⌜

⋊ e
⌜⌐⩀N⌐1

l=k ⌜ ⌜rl+1⌐rl⌜2

4Ddt + dt
Dω2 V(rl)⌝⌝. (A4)

By summing these (N − k) equations [Eqs. (A2), (A3), and (A4)]
and dividing by (N − k), we obtain

⌐Q(r, t) = rf − r
2D(tf − t)Q(r, t) − 1

Dω2⩀ rN=r f

rk=r
drk+1 ⋅ ⋅ ⋅drN⌐1

⋊ e
⌜⌐⩀N⌐1

l=k+1 ⌜ ⌜rl+1⌐rl⌜2

4Ddt + dt
Dω2 V(rl)⌝⌝ 1

N − k
((N − k)dt⌐V(r)

+ (N − k − 1)dt⌐V(rk+1) + ⋅ ⋅ ⋅ + dt⌐V(rN⌐1)). (A5)

Taking the continuous limit of Eq. (A5) yields

2D⌐ ln Q(r, t) = rf − r
tf − t

− 2
ω2⩀ tf

t
dϵ⌝ tf − ϵ

tf − t
⌝⌝⌐V(r(ϵ))⌝,

where the average ⌝⋅ ⋅ ⋅⌝ is done over all the Langevin paths starting
at (r, t) and ending at (r f , t f ),

⌝⌐V(r(ϵ))⌝ = 1
Q(r, t)⩀

r(tf )=r f

r(t)=r
Dr(ϵ)

⋊ e
⌐⊍ t f

t dϵ⌜ ṙ 2
4D+ 1

Dω2 V(r(ϵ))⌝⌐V(r(ϵ)). (A6)

The Langevin bridge equation, thus, becomes

dr
dt
= rf − r

tf − t
− 2

ω2⩀ tf

t
dϵ⌝ tf − ϵ

tf − t
⌝⌝⌐V(r(ϵ))⌝ + ω(t), (A7)

which is Eq. (17) of this article.
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